• Title/Summary/Keyword: Hydrogen Adsorption

Search Result 436, Processing Time 0.032 seconds

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

Water Vapor Adsorption and Hydrogen Peroxide Decomposition on Date Pit Carbonization Products

  • Youssef, A.M.;El-Nabarawy, Th.;Ahmed, S.A. Sayed;Rashwan, W.E.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.227-233
    • /
    • 2005
  • Carbonization products C1, C2, C3, C4 and C5 were prepared by the carbonization of date pit in limited air, at 500, 600, 700, 800 and $1000^{\circ}C$, respectively. C1-V-600, C3-V-600, C1-V-1000 and C3-V-1000 were prepared by thermal treatment of C1 and C3 under vacuum at 600 and $1000^{\circ}C$. The textural properties were determined from nitrogen adsorption at 77 K and from carbon dioxide adsorption at 298 K. The surface pH, the FTIR spectra and the acid and base neutralization capacities of some carbons were investigated. The amounts of surface oxygen were determined by out-gassing the carbon-oxygen groups on the surface as $CO_2$ and CO. The adsorption of water vapor at 308 K on C1, C2, C3 and C4 was measured and the decomposition of $H_2O_2$ at 308 K was also investigated on C1, C2, C3, C4 and C5. The surface area and the total pore volume decreased with the rise of the carbonization temperature from 500 to $1000^{\circ}C$. The adsorption of water vapor is independent on the textural properties, while it is related to the amount of acidic carbon-oxygen groups on the surface. The catalytic activity of $H_2O_2$ decomposition does not depend on the textural properties, but directly related to the amount of basic carbon-oxygen complexes out-gassed as CO, at high temperatures.

  • PDF

Physicochemical Properties and Copper(II) Ion Adsorption Ability of Wood Charcoals (소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과)

  • Lee, Oh-Kyu;Jo, Tae-Su
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2006
  • Physicochemical properties and copper (II) adsorption ability of two oakwood and two pinewood charcoals, which were manufactured in traditional mode and commercialized in Korea, were examined pHs of these four wood charcoals were between 9.5 and 9.8. In the elemental contents of the wood charcoal, the contents of carbon atom (C) in the four samples were between 85-90%, while the content of hydrogen atom (H) in pinewood charcoal of the company 'S' was 1.62% and this value was three time higher than those of other samples. For iodine adsorption and specific surface area, the pinewood charcoal sample showed higher values than those of the oakwood charcoals. In the copper (II) ion adsorption in aqueous solution, the adsorption rate was increased by the increase of treated amounts of charcoal, treatment time, and pH.

  • PDF

Adsorption Characteristics of NH4+ by Biochar Derived from Rice and Maize Residue (벼와 옥수수 부산물로 제조한 바이오차의 NH4+ 흡착 특성 평가)

  • Kang, Yun-Gu;Lee, Jae-Han;Chun, Jin-Hyuk;Oh, Taek-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.161-168
    • /
    • 2021
  • BACKGROUND: Biochar has ability to reduce N loss, increase crop yield, and sequestrate carbon in the soil However, there is still limited study concerning the interactive effects of various biochars on NH3 loss and plant growth. This study, therefore, was conducted to investigate the NH4+ adsorption characteristics of biochar derived from rice and maize residues. METHODS AND RESULTS: By-products were pyrolyzed under oxygen-limited conditions at 300-700℃ for 1 hour and used for experiment of NH4+ adsorption in aqueous solution. The adsorption characteristics of biochar were studied using Langmuir isotherm. Biochar yield and hydrogen content decreased with increasing pyrolysis temperatures, whereas pH, EC, and total carbon content increased. The biochar pyrolyzed at lower temperatures was more efficient at NH4+ adsorption than those produced at higher temperatures. In addition, the RL values, indicating equilibrium coefficient were between 0 and 1, confirming that the result was suitable for Langmuir isotherm. CONCLUSION: The maize stalk biochar pyrolyzed at 300℃ was the most efficient to adsorb NH4+ from the aqueous solution. Furthermore, the adsorption results of this experiment were lower than those of other prior studies, which were ascribed to different experimental conditions such as ingredients, and pyrolysis conditions.

Lead Adsorption by Carboxylated Alginic Acid and Its Application in Cleansing Cosmetics (Carboxylated Alginic Acid 및 이를 함유한 세정용 화장품의 납 흡착 효과)

  • Park, Hee-Yeon;Jang, Mi-Soon;Kadnikova, Irina;Kim, Yeon-Kye;Lim, Chi-Won;Yoon, Ho-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.400-405
    • /
    • 2010
  • This study investigated lead adsorption by carboxylated alginic acid and its application in cleansing cosmetics. Carboxylated alginic acid showed the highest lead adsorptivity after oxidation in a 4-6 mM hydrogen peroxide solution at $20-30^{\circ}C$ for 30-40 min. Carboxylated alginic acid adsorbed $648.1{\pm}2.8-653.0{\pm}2.9$ mg/g of lead dry mass at pH 4-6. Carboxylated alginic acid modified by hydrogen peroxide and potassium permanganate adsorbed $651.3{\pm}3.8$ and $639.9{\pm}4.0$ mg/g of lead dry mass, respectively. Carboxylated alginic acid showed higher lead adsorptivity after modification by hydrogen peroxide than by potassium permanganate, with an increase of ~30% compared with raw alginic acid. To access the potential application of carboxylated alginic acid in cleansing cosmetics, we investigated the lead adsorptivity, conditions of the cosmetics procedure, and cytotoxicity of various concentrations of cleansing cosmetics added to 5% carboxylated alginic acid. The ideal cosmetic concentrations combined with 5% carboxylated alginic acid were 70% for peeling gel, 20% for massage cream, 20% for foam cleansing and 40% for cleansing cream. There was no cytotoxicity in cleansing cosmetics combined with 5% carboxylated alginic acid.

Biogeochemical Effects of Hydrogen Gas on the Behaviors of Adsorption and Precipitation of Groundwater-Dissolved Uranium (지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향)

  • Lee, Seung Yeop;Lee, Jae Kwang;Seo, Hyo-Jin;Baik, Min Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • There would be a possibility of uranium contamination around the nuclear power plants and the underground waste disposal sites, where the uranium could further migrate and diffuse to some distant places by groundwater. It is necessary to understand the biogeochemical behaviors of uranium in underground environments to effectively control the migration and diffusion of uranium. In general, various kinds of microbes are living in soils and geological media where the activity of microbes may be closely connected with the redox reaction of nuclides resulting in the changes of their solubility. We investigated the adsorption and precipitation behaviors of dissolved uranium on some solid materials using hydrogen gas as an electron donor instead of organic matters. Although the effect of hydrogen gas did not appear in a batch experiment that used granite as a solid material, there occurred a reduction of uranium concentration by 5~8% due to hydrogen in an experiment using bentonite. This result indicates that some indigenous bacteria in the bentonite that have utilized hydrogen as the electron donor affected the behavior (reduction) of uranium. In addition, the bentonite bacteria have showed their strong tolerance against a given high temperature and radioactivity of a specific waste environment, suggesting that the nuclear-biogeochemical reaction may be one of main mechanisms if the natural bentonite is used as a buffer material for the disposal site in the future.

The study on the Hydrogen Characteristics of MmNi4.5Mn0.5 Hydrogen Storage Alloy (MmNi4.5Mn0.5계 수소저장합금의 수소화 특성에 관한 연구)

  • Kang, Kil-Ku;Kang, Sei-Sun;Kwon, Ho-Young;Lee, Rhim-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • The hydorgen storage alloys were produced by melting in arc melting furnace and then solution heat treated at $1,100^{\circ}C$ followed by pulverization. The chemical analysis on the samples showed that the major elements of misch metal(Mm) were La, Ce, Pr and Nd with impurity less than 1wt.%. X-ray diffraction indicated that the structure for these samples were a single phase of hexagonal with $CaCu_5$ type. Compared to the initial particle size $100{\sim}110{\mu}m$, the many fine cracks were found and particle size decreased to $14{\mu}m$ for $MmNi_{4.5}Mn_{0.5}$ after hydriding/dehydring test run. To activate the sample the vessel filled with hydrogen storage alloys was first evacuated for for at $70^{\circ}C$ and then treated for 10.5hr under hydrogen pressure of 20atm for $MmNi_{4.5}Mn_{0.5}$ alloy. The experimental data showed that the hydrogen storage alloy of $MmNi_{4.5}Mn_{0.5}$ had superior adsorption and description properties within a temperature rang of $40^{\circ}C{\sim}80^{\circ}C$ and also they had a good P-C-T curve.

A Study on Hydrogen Impurity Effect in Anode of Proton Exchange Membrane Fuel Cell on Various Concentration of CO and H2S (고분자전해질 연료전지 연료극의 일산화탄소 및 황화수소 농도에 따른 불순물영향에 관한 연구)

  • LEE, EUN-KYUNG;BAEK, JAE-HOON;LEE, JUNG-WOON;LEE, SEUNG-KUK;LEE, YEON-JAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2016
  • Hydrogen town in Republic of Korea was established in 2013. Hydrogen as a byproduct produced by various processes of factories is used in hydrogen town facilities. As cell performance is affected by contaminations in fuel gas, various standards about impurities of fuel have been determined by many countries. This study shows performance degradation of single cell with impurities concentrations. Traces of carbon monoxide (CO) and hydrogen sulfide ($H_2S$)can cause considerable cell performance losses. For comparing the performances by poisoning of CO, acceleration test, I-V curve, constant current are performed. Both the CO and $H_2S$ poisoning rate are a function of their concentration. With the higher concentrations the higher poisoning rates are observed. And, it was confirmed that, oxidation behavior and side reaction generation are not affected. Under the lower $H_2S$ concentration condition, the poisoning rate is much higher than that of CO because of its different adsorption intensity. It can be possible that the result of this study can be used for enacting regulation as a baseline data.

Physical and Chemical Adsorption Properties for Tetracycline Using Activated Carbon with Nitrogen Plasma Treatment (질소 플라즈마 처리된 활성탄소를 이용한 테트라사이클린의 물리 및 화학 흡착 특성)

  • In Woo Lee;Seongjae Myeong;Chung Gi Min;Seongmin Ha;Seoyeong Cheon;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • In this study, nitrogen plasma treatment was performed in 5, 10, and 15 minutes to improve the tetracycline adsorption performance of activated carbon. All nitrogen plasma-treated activated carbons showed improved tetracycline adsorption compared to untreated activated carbons. The nitrogen functional groups in activated carbon lead to chemisorption with tetracycline via π-π interactions and hydrogen bonding. In particular, in the nitrogen plasma treatment at 80 W and 50 kHz, the activated carbon treated for 10 minutes had the best adsorption performance. At this time, the nitrogen content on the surface of the activated carbon was 2.03% and the specific surface area increased to 1,483 m2/g. As a result, nitrogen plasma treatment of activated carbon improved its physical and chemical adsorption capabilities. In addition, since the adsorption experimental results were in good agreement with the Langmuir isotherm and pseudo-second order model, it was determined that the adsorption of tetracycline on the nitrogen plasma-treated activated carbon was dominated by chemical adsorption through a monolayer. As a result, nitrogen plasma-treated activated carbon can be used as an adsorbent to efficiently remove tetracycline from water due to the synergistic effect of physical adsorption and proactive chemical adsorption.

Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption

  • Jeon, Nu Ri;Song, Hoon Sub;Park, Moon Gyu;Kwon, Soon Jin;Ryu, Ho Jeong;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide ($H_2S$) adsorption at mid-to-high (300 to $500^{\circ}C$) temperatures. In order to investigate the critical roles of oxygen containing functional groups, such as hydroxyl, epoxy and carboxyl groups, attached on rGO surface for the $H_2S$ adsorption, various characterization methods (TGA, XRD, FT-IR, SEM and XPS) were conducted. For the reduction process for graphite oxide (GO) to rGO, a microwave irradiation method was used, and it provided a mild reduction environment which can remain substantial amount of oxygen functional groups on rGO surface. Those functional groups were anchoring and holding nano-sized ZnO onto the 2D rGO surface; and it prevented the aggregation effect on the ZnO particles even at high temperature ranges. Therefore, the $H_2S$ adsorption capacity had been increased about 3.5 times than the pure ZnO.