• Title/Summary/Keyword: Hydrogels

Search Result 308, Processing Time 0.019 seconds

Characterization of alginate/carboxymethyl scleroglucan hydrogels as a delivery system for protein drug

  • Lee, Chang-Moon;Park, Jeong-Eun;Kim, Dong-Woon;Rhee, Joon-Haeng;Kim, Gwang-Yun;Lee, Ki-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.580-583
    • /
    • 2005
  • The aim of this study was to prepare a hydrogels composed of alginate blended with a carboxymethyl scleroglucan (CMSC) and evaluate the feasibility of the hydrogels as a drug delivery system for a protein. The main advantage of the alginate/CMSC hydrogels is to improve a restricted drug release from alginate hydrogels. The CMSC was chemically synthesized with chloroacetic acid and confirmed using a FT-IR. The alginate/CMSC hydrogels were prepared at distinct compositions by crosslinking with calcium ions. The swelling ratios of these hydrogels increased significantly with increasing the content of CMSC. At pH 7.4, the swelling ratios of the hydrogels increased remarkably as compared to those at pH 1.2. In ovalbumin (OVA) release test, the amount of OVA released from the hydrogels showed higher as compared to those released at pH 1.2. In addition, the release of OVA was improved with increasing the content of CMSC. Thus, the alginate/CMSC hydrogels may be used as a potential system for oral delivery of protein drugs.

  • PDF

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Skin Penetration and in Vivo Local Anesthetic Effect of Microemulsion-based Hydrogels Containing Lidocaine (리도카인을 함유하는 마이크로에멀젼 겔의 피부침투성 및 in vivo 마취효과)

  • Shin, Hyun-Woo;Lee, Gi-Bong;Lee, Sang-Kil;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.273-278
    • /
    • 2000
  • Several topical preparations containing lidocaine, a widely used local anesthetic agent, have been developed and marketed recently for the treatment of premature ejaculation. In this study, microemulsion(ME)-based hydrogels containing lidocaine were prepared by dispersing ME to hydrogel bases such as Carbopol, sod. alginate, and sod. carboxymethylcellulose. Lidocaine-containing ME was thermodynamically stable over 6 months and had a diameter ranging from 10 to 100 nm. In vitro skin penetration of lidocaine from ME-based hydrogels followed apparent zero-order kinetics. ME-based hydrogel showed higher drug penetration during fifteen minutes after application than alcoholic hydrogel, reference preparation. Tail flick test in rat was introduced to compare in vivo local anesthetic effects of different hydrogels, and the results showed that ME-based hydrogels are superior to other hydrogels. In optical microscopy, recrystallization of lidocaine was observed within 5 min after application of reference hydrogel, but there was no change in ME-based hydrogels even after 30 minnute. These results indicated that ME-based hydrogels had some advantages in skin penetration, anesthetic effect and physical stability compared with alcoholic hydrogels. Finally it is possible to conclude that ME-based hydrogels containing lidocaine is a good topical drug delivery system for the treatment of premature ejaculation.

  • PDF

pH- and Temperature-Sensitive Bifunctional Hydrogels of N-Isopropylacrylamide and Sulfadimethoxine Monomer

  • Lee, Jin-Woo;Lee, Doo-Sung;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2003
  • pH- and temperature-sensitive bifunctional hydrogels composed of N-isopropylacrylamide (NiPAAm) and a sulfadimethoxine monomer (SDM) derived from sulfadimethoxine were prepared. These hydrogels exhibit simultaneous pH- and temperature-induced volume-phase transitions. The pH-induced volume-phase transition behavior is produced by the ionization/deionization of SDM and is very sharp. In the high pH region, the ionization of SDM induces swelling of the hydrogels. In the low pH region, the deionization of SDM induces deswelling of the hydrogels. The temperature-induced volume-phase transition behavior of the bifunctional hydrogels exhibits negative thermosensitivity because of the NiPAAm component. The hydrogels swell even at low pH as the temperature decreases. The hydrogels swell at low temperature and high pH, and deswell at high temperature and low pH. The volume of the hydrogels dependl on the balance of the swelling and deswelling produced by the two competing stimuli, pH and temperature.

Effect of PVA Concentration on Strength and Cell Growth Behavior of PVA/gelatin Hydrogels for Wound Dressing

  • Kim, Soyeun;Lim, Hyunju;Kim, Sojeong;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Polyvinyl alcohol (PVA)/gelatin hydrogels were prepared by repeating freezing/thawing three times to evaluate the influence of PVA concentration on the strength and the cell growth behavior of the PVA/gelatin hydrogels. The swelling rate of the PVA/gelatin hydrogels decreased with raising the PVA content from 6 wt% to 12 wt% due to the formation of 3-D network inside the hydrogel. No appreciable degradation of the hydrogels was detected. As the PVA content increased from 6 wt% to 12 wt%, the strength of the PVA/gelatin hydrogels increased drastically from 6.4±0.9 kPa to 46.6±9.0 kPa. The PVA/gelatin hydrogels did not show any evidence of causing cell lysis or toxicity, implying that the hydrogels are clinically safe and effective. Although the strength increased with increasing the PVA content, the PVA/gelatin hydrogels containing 8 wt% exhibited the fastest cell growth, which is highly suitable for wound dressing requiring fast healing regeneration.

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).

Alginate/Carboxymethyl Scleroglucan Hydrogels for Controlled Release of Protein Drugs

  • Lee, Chang-Moon;Jeong, Hwan-Jeong;Kim, Dong-Woon;Lee, Ki-Young
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.429-433
    • /
    • 2008
  • Alginate/carboxymethyl scleroglucan (CMSG) hydrogels were suggested as a novel carrier for the controlled release of protein drugs. The drug release characteristics of alginate hydrogels were improved by CMSG addition. Scleroglucan (Sclg) was carboxymethylated using monochloroacetic acid in aqueous alkaline medium. Alginate/CMSG hydrogels were prepared by dropping the mixture solution of alginate/CMSG into calcium chloride solution. The swelling behaviors and drug release characteristics of the hydrogels were investigated in the buffers of pH 1.2 or 7.4. As the CMSG content increased in the hydrogels, the swelling ratio of the alginate/CMSG hydrogel increased rapidly in the buffer of pH 7.4. At pH 1.2, however, the swelling ratio significantly decreased compared to that at pH 7.4. According to in vitro release tests, only 15% of ovalbumin, investigated as a model protein drug, was released from the alginate/CMSG hydrogels at pH 1.2 within 6 h. At pH 7.4, however, the drug release significantly increased due to the rapid swelling of the hydrogels. The release and swelling behaviors of the hydrogels could be controlled by changing the CMSG content in the hydrogels. These results supported the use of alginate/CMSG hydrogels as a suitable carrier for the controlled release of protein drugs in a pH responsive manner.

Influence of Starch Concentration and Mastication on the Lipid Digestion and Bioaccessibility of β-carotene loaded in Filled Hydrogels (베타-카로텐 탑재 하이드로 젤 농도와 저작에 따른 지방소화율과 생체접근율의 변화)

  • Mun, Saehun;Kim, Yong-Ro
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • Purpose: This study was conducted to examine the effects of the starch concentration of filled hydrogel and the addition of ${\alpha}-amylase$ and simulated mastication processing in an oral phase on lipid digestion and ${\beta}-carotene$ bioaccessibility of filled hydrogels. Methods: Lipid digestion and ${\beta}-carotene$ bioaccessibility of the filled hydrogels were measured after the samples were passed through an in vitro gastrointestinal tract model consisting of oral, gastric, and small intestinal phases. Results: The initial rate and final extent of lipid digestion were higher in the filled hydrogels than in the emulsion when the filled hydrogels were treated in an oral phase without simulated mastication processing and addition of ${\alpha}-amylase$, regardless of starch concentration. However, when the filled hydrogels were minced using mortar and pestle for 2 min and were exposed to ${\alpha}-amylase$, the filled hydrogel fabricated with 5% starch showed the lowest lipid digestion rate and extent compared to the emulsion and other filled hydrogels. Bioaccessibility of ${\beta}-carotene$ was higher in the filled hydrogels than in the emulsion, regardless of the digestion method performed in an oral phase and starch concentration. However, there were appreciable differences in bioaccessibility of the filled hydrogels depending on whether or not simulated mastication and addition of ${\alpha}-amylase$ were employed. Conclusion: These results suggested that the rheological properties of initial filled hydrogels and simulated mastication processing in an oral phase plays an important role in determining the lipid digestion and ${\beta}-carotene$ bioacccessibility entrapped within filled hydrogels.

Preparation and Characterization of Self-assembled Glycol Chitosan Hydrogels Containing Palmityl-acylated Exendin-4 for Extended Hypoglycemic Action

  • Lee, Ju-Ho;Lee, Chang-Kyu;Bae, Sung-Ho;Yoon, Jeong-Hyun;Choi, Eun-Joo;Oh, Kyung-Taek;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Injectable chitosan hydrogels have attracted great potential due to sustained-release property and safety. Here, palmityl-acylated glycol chitosan (Pal-GC) was used to generate physically cross-linked hydrogels by virtue of hydrophobic attraction of linear fatty carbons. Glycol chitosan was chemically modified with N-hydroxysuccinimide-activated palmitic acid in dimethylsulfoxide (DMSO) containing dimethylaminopyridine. Through a series of preparation steps of (i) dialysis with DMSO, (ii) addition of palmityl-acylated exendin-4 (Ex4-C16), and (iii) dialysis with water, Pal-GC was self-assembled to form physically cross-linked hydrogels entrapped with Ex4-C16. The Pal-GC derivative was analyzed by using 1H NMR, and the surface morphology of Pal-GC hydrogels formed was examined by scanning electron microscopy. Also, the hypoglycemic effect induced by Pal-GC hydrogels containing Ex4-C16 (250 nmol/kg) was evaluated in non-fasted type 2 diabetic db/db mice and compared with GC hydrogels containing native Ex4 at the same dose. Results showed that palmityl group was successfully conjugated with the amines of glycol chitosan, and that Pal-GC efficiently generated the hydrogels formation. Moreover, Pal-GC hydrogels containing Ex4-C16 was found to greatly prolong the hypoglycemia duration (~ 4 days). This was due to the dual-functions of the palmityl groups present in both GC and exendin-4 such as hydrophobic attraction and plasma albumin-binding. We consider this new type of self-assembled GC hydrogels loaded with Ex4-C16 would be a promising long-acting sustained-release system with anti-diabetic property.

Synthesis of Poly(N-methylol Methacrylamide/Vinyl Sulfonic Acid) Hydrogels for Heavy Metal Ion Removal

  • Yakar, Arzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3063-3070
    • /
    • 2014
  • In this study, poly(N-methylol methacrylamide) (NMMAAm) and poly(N-methylol methacrylamide/vinyl sulphonic acid) (NMMAAm-VSA) hydrogels were synthesized by $^{60}Co-{\gamma}$ ray irradiation at an ambient temperature. The graphs belonging to the gelation percent- percent-dose and swelling curves were drawn by using data which were obtained from water and different pH solutions. Characterization of hydrogels was performed by FTIR and DSC-TGA analysis. Heavy metal ion ($Ni^{2+}$, $Co^{2+}$) removal capacities of hydrogels were investigated in aqueous solutions, which had different concentrations (100-1500 mg/L). In metal ion removal studies, pH value of aqueous medium was kept constant at 5.0. Maximum metal ion removal values were obtained for NMMAAm-VSA (1:3 mole ratio) hydrogels. Metal ion removal capacities of NMMAAm-VSA (1:3 mole ratio) hydrogels were found as 82 mg/g and 98 mg/g for $Ni^{2+}$ and $Co^{2+}$ ions, respectively.