References
- Ades H, Kesselman E, Ungar Y, Shimoni E. 2012. Complexation with starch for encapsulation and controlled release of menthone and menthol. LWT-Food Sci Technol 45(2):277-288. https://doi.org/10.1016/j.lwt.2011.08.008
-
Butterworth PJ, Warren FJ, Ellis PR. 2011. Human
$\alpha$ -amylase and starch digestion: An interesting marriage. Starch-Starke 63(7):395-405. https://doi.org/10.1002/star.201000150 - Choi HM, Yoo BS. 2007. Dynamic rheological properties of hydroxypropylated rice starches during the aging process. Korean J Food Sci Technol 39(5):584-587.
- Chung C, Degner B, McClements DJ. 2012. Instrumental mastication assay for texture assessment of semi-solid foods: Combined cyclic squeezing flow and shear viscometry. Food Res Int 49(1):161-169. https://doi.org/10.1016/j.foodres.2012.08.024
- Engelen L, de Wijk RA, Prinz JF, Janssen AM, van der Bilt A, Weenen H, Bosman F. 2003. A comparison of the effects of added saliva, alpha-amylase and water on texture perception in semisolids. Physiol Behav 78(4):805-811. https://doi.org/10.1016/S0031-9384(03)00083-0
- Handelman GJ. 2001. The evolving role of carotenoids in human biochemistry. Nutr 17(10):818-822. https://doi.org/10.1016/S0899-9007(01)00640-2
- Johnson EJ. 2002. The role of carotenoids in human health. Nutr Clin Care 5(2):56-65. https://doi.org/10.1046/j.1523-5408.2002.00004.x
- Kim JM, Song JY, Shin M. 2010. Physicochemical properties of high amylose rice starches purified from Korean cultivars. Starch-Starke 62(5):262-268. https://doi.org/10.1002/star.200900230
- Kwon JY, Song JY, Shin M. 2005. Characteristics of non-waxy rice starch/gum mixture gels. Korean J Food Cook Sci 21(6): 942-949.
-
Liang R, Shoemaker CF, Yang X, Zhong F, Huang Q. 2013. Stability and bioaccessibility of
$\beta$ -carotene in nanoemulsions stabilized by modified starches. J Agric Food Chem 61(6): 1249-1257. https://doi.org/10.1021/jf303967f -
Lopez-Pena CL, Zheng B, Sela DA, Decker EA, Xiao H, McClements DJ. 2016. Impact of
$\varepsilon$ -polylysine and pectin on the potential gastrointestinal fate of emulsified lipids: In vitro mouth, stomach and small intestine model. Food Chem 192:857-864. https://doi.org/10.1016/j.foodchem.2015.07.054 - Matalanis A, Jones OG, McClements DJ. 2011. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll 25(8):1865-1880. https://doi.org/10.1016/j.foodhyd.2011.04.014
- Matalanis A, McClement DJ. 2012. Impact of encapsulation within hydrogel microspheres on lipid digestion: An in vitro study. Food Biophys 7(2):145-154. https://doi.org/10.1007/s11483-012-9252-5
- McClements DJ, Decker EA, Park Y. 2009. Controlling lipid bioavailability through physicochemical and structural approaches. Crit Rev Food Sci Nutr 49(1):48-67. https://doi.org/10.1080/10408390701764245
- McClements DJ. 2013. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: Structural design of medical and functional food. Expert Opin Drug Deliv 10(12):1621-1632. https://doi.org/10.1517/17425247.2013.837448
- Morell P, Hernando I, Fiszman SM. 2014. Understanding the relevance of in mouth food processing. A review of in vitro techniques. Trends Food Sci Technol 35(1):18-31. https://doi.org/10.1016/j.tifs.2013.10.005
-
Mun SH, Kim YR, McClements DJ. 2015a. Control of
$\beta$ -carotene bioaccessibility using starch-based filled hydrogels. Food Chem 173:454-461. https://doi.org/10.1016/j.foodchem.2014.10.053 - Mun SH, Kim YR, Shin MS, McClements DJ. 2015b. Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocoll 44:380-389. https://doi.org/10.1016/j.foodhyd.2014.10.013
-
Mun SH, McClements DJ. 2017. Influence of simulated in-mouth processing (size reduction and alpha-amylase addition) on lipid digestion and
$\beta$ -carotene bioaccessibility in starch-based filled hydrogels. LWT-Food Sci Technol 80:113-120. https://doi.org/10.1016/j.lwt.2017.02.011 -
Mun SH, Park SJ, Kim YR, McClements DJ. 2016. Influence of methylcellulose on attributes of
$\beta$ -carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Food Res Int 87:18-24. https://doi.org/10.1016/j.foodres.2016.06.008 - Porter CJH, Pouton CW, Cuine JF, Charman WN. 2008. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673-691. https://doi.org/10.1016/j.addr.2007.10.014
-
Qian C, Decker EA, Xiao H, McClements DJ. 2012. Nanoemulsion delivery systems: Influence of carrier oil on
$\beta$ -carotene bioaccessibility. Food Chem 135(3):1440-1447. https://doi.org/10.1016/j.foodchem.2012.06.047 -
Qian C, Decker EA, Xiao H, McClements DJ. 2013. Impact of lipid nanoparticle physical state on particle aggregation and
$\beta$ -carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res Int 52(1):342-349. https://doi.org/10.1016/j.foodres.2013.03.035 - Reboul E. 2013. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutr 5(9):3563-3581. https://doi.org/10.3390/nu5093563
-
Salvia-Trujillo L, Qian C, Martin-Belloso O, McClements DJ. 2013a. Modulating
$\beta$ -carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chem 139(1):878-884. https://doi.org/10.1016/j.foodchem.2013.02.024 -
Salvia-Trujillo L, Qian C, Martin-Belloso O, McClements DJ. 2013b. Influence of particle size on lipid digestion and
$\beta$ -carotene bioaccessibility in emulsions and nanoemulsions. Food Chem 141(2):1472-1480. https://doi.org/10.1016/j.foodchem.2013.03.050 - Sarkar A, Goh KKT, Singh H. 2009a. Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocoll 23(5):1270-1278. https://doi.org/10.1016/j.foodhyd.2008.09.008
-
Sarkar A, Goh KKT, Singh RP, Singh H. 2009b. Behaviour of an oil-in-water emulsion stabilized by
$\beta$ -lactoglobulin in an in vitro gastric model. Food Hydrocoll 23(6):1563-1569. https://doi.org/10.1016/j.foodhyd.2008.10.014 - Singh H, Ye A, Horne D. 2009. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 48(2):92-100. https://doi.org/10.1016/j.plipres.2008.12.001
- Tang JL, Sun J, He ZG. 2007. Self-emulsifying drug delivery systems: Strategy for improving oral delivery of poorly soluble drugs. Current Drug Ther 2(1):85-93. https://doi.org/10.2174/157488507779422400
- Troncoso E, Aguilera JM, McClements DJ. 2012. Fabrication, characterization and lipase digestibility of food-grade nanoemulsion. Food Hydrocoll 27(2):355-363. https://doi.org/10.1016/j.foodhyd.2011.10.014
-
Wang P, Liu HJ, Mei XY, Nakajima M, Yin LJ. 2012. Preliminary study into the factors modulating
$\beta$ -carotene micelle formation in dispersions using an in vitro digestion model. Food Hydrocoll 26(2):427-433. https://doi.org/10.1016/j.foodhyd.2010.11.018 -
Yang Y, McClements DJ. 2013a. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified
$\alpha$ -tocopherol acetate. Food Chem 141(1):473-481. https://doi.org/10.1016/j.foodchem.2013.03.033 - Yang Y, McClements DJ. 2013b. Vitamin E and Vitamin E acetate solubilization in mixed micelles: Physicochemical basis of bioaccessibility. J Colloid Interface Sci 405:312-321. https://doi.org/10.1016/j.jcis.2013.05.018
- Yonekura L, Nagao A. 2007. Intestinal absorption of dietary carotenoids. Mol Nutr Food Res 51(1):107-115. https://doi.org/10.1002/mnfr.200600145