• Title/Summary/Keyword: Hydrofluoric acid (HF)

Search Result 89, Processing Time 0.029 seconds

Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.263-268
    • /
    • 2016
  • This study describes the effect of coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode surface with a homogeneous carbon layer produced by carbonization of polyvinylidene fluoride (PVDF) as a novel organic source. The phase integrity of the above cathode was not affected by the carbon coating, whereas its rate capability and cycling performance were enhanced. Similarly, the cathode thermal stability was also improved after coating, which additionally protected the cathode surface against the reactive electrolyte containing hydrofluoric acid (HF). The results show that coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode with carbon using the PVDF precursor is an effective approach to enhance its electrochemical properties.

Fabrication of Glass Etching Mask using Various Polymers and Metals and Test of it in Glass Micromaching (폴리머와 금속을 이용한 유리 식각 마스크의 저작 및 이를 이용한 유리 가공)

  • Jeon, Do-Han;Sim, Woo-Young;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.268-270
    • /
    • 2004
  • This paper reports a novel masking method with various mask materials for wet etching of glass. Various mask materials such as Cr/Au, Ti/Au, Polyimide and thick SU-8 photoresist were investigated for borosilicate glass (Borofloat33) etching in concentrated hydrofluoric acid (48% HF). Polyimide and thick SU-8 photoresist are not suitable as masking material due to its poor adhesion to glass surfaces. Titanium has good adhesion is suitable as the first layer to make multi-protective layers. The best protection was obtained with a combination of Ti/Au, polyimide and Ti/Au as masking material with etch depth of $350{\mu}m$ achieved.

  • PDF

Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass (디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

Effect of Manufacturing Process on Electrochemical Properties of CP-Ti and Ti-6Al-4V Alloys (CP-Ti 및 Ti-6Al-4V 합금의 전기화학적 특성에 미치는 제조공정의 영향)

  • Kim, K.T.;Cho, H.W.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Ti and its alloys show the excellent corrosion resistance to chloride environments, but they show less corrosion resistance in HCl, $H_2SO_4$, NaOH, $H_3PO_4$, and especially HF environments at high temperature and concentration. In this study, we used the commercially pure titanium and Ti-6Al-4V alloy, and evaluated the effect of the manufacturing process on the electrochemical properties. We used commercial products of rolled and forged materials, and made additive manufactured materials by DMT (Directed Metal Tooling) method. We annealed each specimen at $760^{\circ}C$ for one hour and then air cooled. We performed anodic polarization test, AC impedance measurement, and Mott-Schottky plot to evaluate the electrochemical properties. Despite of the difference of its microstructure of CP-Ti and Ti-6Al-4V alloys by the manufacturing process, the anodic polarization behavior was similar in 20% sulfuric acid. However, the addition of 0.1% hydrofluoric acid degraded the electrochemical properties. Among three kinds of the manufacturing process, the electrochemical properties of additive manufactured CP-Ti, and Ti-6Al-4V alloys were the lowest. It is noted that the test materials showed a Warburg impedance in HF acid environments.

Wet Etching Characteristics of Cu Surface for Cu-Cu Pattern Direct Bonds (Cu-Cu 패턴 직접접합을 위한 습식 용액에 따른 Cu 표면 식각 특성 평가)

  • Park, Jong-Myeong;Kim, Yeong-Rae;Kim, Sung-Dong;Kim, Jae-Won;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Three-dimensional integrated circuit(3D IC) technology has become increasingly important due to the demand for high system performance and functionality. In this work, BOE and HF wet etching of Cu line surfaces after CMP were conducted for Cu-Cu pattern direct bonding. Step height of Cu and $SiO_2$ as well as Cu dishing after Cu CMP were analyzed by the 3D-Profiler. Step height increased and Cu dishing decreased with increasing BOE and HF wet etching times. XPS analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE and HF wet etching treatment. BOE treatment showed not only the effective $SiO_2$ etching but also reduced dishing and Cu surface oxide rather than HF treatment, which can be used as an meaningful process data for reliable Cu-Cu pattern bonding characteristics.

Study on enhanced electron emission current of carbon nanotube by thermal and HF treatments (열 및 불산 처리를 통한 탄소나노튜브의 전자 방출 특성의 향상 연구)

  • Kim, K.S.;Ryu, J.H.;Lee, C.S.;Lim, H.E.;Ahn, J.S.;Jang, J.;Park, K.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • We studied the effect of thermal annealing and hydrofluoric (HF) acid treatment on the field emission properties of carbon nanotube field emitter arrays (CNT-FEAs) grown with the resist-assisted patterning (RAP) process. After thermal and HF treatment, it was observed that the electron emission properties were remarkably improved. The enhanced electron emission was also found to depend strongly on the sequence of the treatments; the electronemission current density is 656 $mA/cm^2$ with the process of thermal treatment prior to HF treatment while the current density is reduced by 426 $mA/cm^2$ with the reversal processes. This is due to the increased crystalline structure by thermal annealing and then strong fluorine bond was formed by HF treatment.

How will surface treatments affect the translucency of porcelain laminate veneers?

  • Turgut, Sedanur;Bagis, Bora;Ayaz, Elif Aydogan;Korkmaz, Fatih Mehmet;Ulusoy, Kivanc Utku;Bagis, Yildirim Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate whether surface treatments affect the translucency of laminate veneers with different shades and thicknesses. MATERIALS AND METHODS. A total of 224 disc-shaped ceramic veneers were prepared from A1, A3, HT (High Translucent) and HO (High Opaque) shades of IPS e.max Press (Ivoclar Vivadent) with 0.5 mm and 1.0 mm thicknesses. The ceramics were divided into four groups for surface treatments. Group C: no surface treatments; Group HF: etched with hydrofluoric acid; Group SB: sandblasted with 50-${\mu}m$ $Al_2O_3$; and Group L; irradiated with an Er;YAG laser. A translucent shade of resin cement (Rely X Veneer, 3M ESPE) was chosen for cementation. The color values of the veneers were measured with a colorimeter and translucency parameter (TP) values were calculated. A three-way ANOVA with interactions for TP values was performed and Bonferroni tests were used when appropriate (${\alpha}=0.05$). RESULTS. There were significant interactions between the surface treatments, ceramic shades and thicknesses (P=.001). For the 0.5-mm-thick specimens there were significant differences after the SB and L treatments. There was no significant difference between the HF and C treatments for any shades or thicknesses (P>.05). For the 1-mm-thick ceramics, there was only a significant difference between the L and C treatments for the HT shade ceramics (P=.01). There were also significant differences between the SB and C treatments except not for the HO shades (P=.768). CONCLUSION. The SB and L treatments caused laminate veneers to become more opaque; however, HF treatment did not affect the TP values. When the laminate veneers were thinner, both the shade of the ceramic and the SB and laser treatments had a greater effect on the TP values.

Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC (고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

EFFECTS OF SURFACE TREATMENTS AND STORAGE CONDITIONS ON TARGIS/DENTIN BOND STRENGTH (Targis 표면처리가 상아질과의 전단결합강도에 미치는 영향)

  • Oh, Young-Taek;Hwang, Su-Jin;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.262-271
    • /
    • 2000
  • The purpose of this study was to estimate shear bond strength according to difference in Targis surface treatment and storage condition. 140 non-carious extracted human molars and Targis D210(Ivoclar, Liechtenstein) were used in the present study and were divided into 7 experimental groups respectively according to surface treatment of Targis. Group 1 ; No treatment, Group 2 ; $50{\mu}m$ aluminium oxide blasting, Group 3 ; 4% HF etching for 3 minutes, Group 4 ; 4% HF etching after blasting, Group 5 ; silane treatment after blasting, Group 6 ; silane treatment after 4% HF etching, Group 7 ; silane treatment after blasting and 4% HF etching. In Each group, one half of 20 specimens was stored in distilled water at $37^{\circ}C$ for 24 hours and the other half was stored at atmosphere for 24 hours respectively. Dentin surface was etched with 10% $H_3PO_4$ for 15 seconds and luting cement(Variolink II, Vivadent, Liechtenstein) was applied by manufacturer's recommendation. Shear bond strength for each group was then measured. To examine the failure patterns after shear bond test and to observe the change after surface treatment of Targis. Specimens were fabricated and observed under the SEM. Statistical analysis was performed by One Way ANOVA test and t-test. The results were as follows ; 1. The shear bond strength of the groups stored in water significantly lower than that of groups stored at atmosphere (P<0.05). 2. There was no significant difference in shear bond strength in groups stored in water (P>0.05). 3. The shear bond strength without surface treatment of Targis were lowest among all experimental groups in atmosphere condition(P<0.05). 4. There was no significant difference in bond strength between groups using the silane or not(P>0.05). 5. The groups treated by blasting, hydrofluoric acid and silane sequentially showed highest bond strength than that of other groups in atmosphere condition, but there was no significant difference(P>0.05). 6 The proportions of the specimens showing the mixed fracture failure were 20% in HF etching group and blasting + HF group, 40% in blasting + HF + silane group in atmosphere condition. All the specimens stored in water showed adhesive fracture failure.

  • PDF

An Investigation on Gridline Edges in Screen-Printed Crystalline Silicon Solar Cells

  • Kim, Seongtak;Park, Sungeun;Kim, Young Do;Kim, Hyunho;Bae, Soohyun;Park, Hyomin;Lee, Hae-Seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.2-490.2
    • /
    • 2014
  • Since the general solar cells accept sun light at the front side, excluding the electrode area, electrons move from the emitter to the front electrode and start to collect at the grid edge. Thus the edge of gridline can be important for electrical properties of screen-printed silicon solar cells. In this study, the improvement of electrical properties in screen-printed crystalline silicon solar cells by contact treatment of grid edge was investigated. The samples with $60{\Omega}/{\square}$ and $70{\Omega}/{\square}$ emitter were prepared. After front side of samples was deposited by SiNx commercial Ag paste and Al paste were printed at front side and rear side respectively. Each sample was co-fired between $670^{\circ}C$ and $780^{\circ}C$ in the rapid thermal processing (RTP). After the firing process, the cells were dipped in 2.5% hydrofluoric acid (HF) at room temperature for various times under 60 seconds and then rinsed in deionized water. (This is called "contact treatment") After dipping in HF for a certain period, the samples from each firing condition were compared by measurement. Cell performances were measured by Suns-Voc, solar simulator, the transfer length method and a field emission scanning electron microscope. According to HF treatment, once the thin glass layer at the grid edge was etched, the current transport was changed from tunneling via Ag colloids in the glass layer to direct transport via Ag colloids between the Ag bulk and the emitter. Thus, the transfer length as well as the specific contact resistance decreased. For more details a model of the current path was proposed to explain the effect of HF treatment at the edge of the Ag grid. It is expected that HF treatment may help to improve the contact of high sheet-resistance emitter as well as the contact of a high specific contact resistance.

  • PDF