Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.6.435

Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC  

Shin, Dong-Ho (Graduate School, Mokpo National Maritime University)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
Publication Information
Corrosion Science and Technology / v.20, no.6, 2021 , pp. 435-450 More about this Journal
Abstract
The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.
Keywords
PEMFC; Metallic bipolar plate; 316L Stainless steel; NaCl concentration; Electrochemical characteristics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, J. S. Kim, N. H. Kang, H. H. Jo, and D. H. Nam, Surfce Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate, Journal of The Korean Institute of Surface Engineering, 44, 226 (2011). Doi: https://doi.org/10.5695/JKISE.2011.44.5.226   DOI
2 R. A. Antunes, M. C. L. Oliveira, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 35, 3632 (2010). Doi: https://doi.org/10.1016/j.ijhydene.2010.01.059   DOI
3 I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163   DOI
4 R. N. Parkins, Localized corrosion and crack initiation, Materials Science Engineering : A, 103, 143 (1988). Doi: https://doi.org/10.1016/0025-5416(88)90562-9   DOI
5 I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683   DOI
6 H. K. Hwang, and S. J. Kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266   DOI
7 H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, p.180, 191, 198, 212 Steel & Metal News (2007).
8 P. Deng, Q. Peng, E. H. Han, W. Ke, and C. Sun, Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water, Journal of Materials Science & Technology, 65, 61 (2021). Doi: https://doi.org/10.1016/j.jmst.2020.04.068   DOI
9 N. Kumar, G. P. Shaik, S. Pandurangan, B. Khalkho, L. and Neelakantan, R. Chetty, Corrosion characteristics and fuel cell performance of a cost-effective high Mn-Low Ni austenitic stainless steel as an alternative to SS 316L bipolar plate, International Journal of Energy Research, 44, 1 (2020). Doi: https://doi.org/10.1002/er.5422   DOI
10 Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067   DOI
11 G. T. Burstein, and S. P. Vines, Repetitive Nucleation of Corrosion Pits on Stainless Steel and the Effects of Surface Roughness, Journal of The Electrochemical Society, 148, 504 (2001). Doi: https://doi.org/10.1149/1.1416503   DOI
12 R. C. Makkus, A. H. H. Janssen, F. A. de Bruijn, and R. K. A. M. Mallant, Use of stainless steel for cost competitive bipolar plates in the SPFC, Journal of Power Sources, 86, 274 (2000). Doi: https://doi.org/10.1016/S0378-7753(99)00460-7   DOI
13 A. Pozio, F. Zaza, A. Masci, and R. F. Silva, Bipolar plate materials for PEMFCs : A conductivity and stability study, Journal of Power Sources, 179, 631 (2008). Doi: https://doi.org/10.1016/j.jpowsour.2008.01.038   DOI
14 M. P. Brady, H. Wang, B. Yang, J. A. Turner, M. Bordignon, R. Molins, M. A. Elhamid, L. Lipp, and L. R. Walker, Growth of Cr-Nitrides on commercial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates, International Journal of Hydrogen Energy, 32, 3778 (2007). Doi: https://doi.org/10.1016/j.ijhydene.2006.08.044   DOI
15 D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, Stainless steel as a bipolar plate material for solid polymer fuel cells, Journal of Power Sources, 86, 237 (2000). Doi: https://doi.org/10.1016/S0378-7753(99)00524-8   DOI
16 R. F. Zhang, D. J. Yang, H. Zhu, and C. M. Zhang, Research on Potentiostatic Accelerated Test Method for Fuel Cell Metal Bipolar Plate, Journal of The Electrochemical Society, 89, 3 (2019). Doi: https://doi.org/10.1149/08907.0003ecst   DOI
17 Z. Wang, A. Seyeux, S. Zanna, V. Maurice, and P. Marcus, Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation, Electrochimica Acta, 329, 135159 (2020). Doi: https://doi.org/10.1016/j.electacta.2019.135159   DOI
18 L. R. Hilbert, D. B. Ravn, J. Kold, and L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International Biodeterioration & Biodegradation, 52, 175 (2003). Doi: https://doi.org/10.1016/S0964-8305(03)00104-5   DOI
19 ASTM G46-94, Standard Guide for Examination and Evaluation of Pitting Corrosion, p. 5, ASTM International, West Conshohocken, PA (2005).
20 ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, P.7, ASTM International, West Conshohocken, PA (2004).
21 H. Wang, M. A. Sweikart, and J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115, 243 (2003). Doi: https://doi.org/10.1016/S0378-7753(03)00023-5   DOI
22 I. H. Oh, and J. B. Lee, Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010). Doi: https://doi.org/10.14773/cst.2010.9.3.129   DOI
23 L. F. Lin, C. Y. Chao, and D. D. Macdonald, A Point Defect Model for Anodic Passive Films: II . Chemical Breakdown and Pit Initiation, Journal of The Electrochemical Society, 128, 1194 (1981). Doi: https://doi.org/10.1149/1.2127592   DOI
24 A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016   DOI
25 H. Ogawa, H. Omata, I. Itoh, and H. Okada, Auger Electron Spectroscopic and Electrochemical Analysis of the Effect of Alloying Elements on the Passivation Behavior of Stainless Steels, Journal of The Electrochemical Society, 34, 52 (1978). Doi: https://doi.org/10.5006/0010-9312-34.2.52   DOI