Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.1.20

Effect of Manufacturing Process on Electrochemical Properties of CP-Ti and Ti-6Al-4V Alloys  

Kim, K.T. (The Corrosion Science Society of Korea)
Cho, H.W. (The Corrosion Science Society of Korea)
Chang, H.Y. (The Corrosion Science Society of Korea)
Kim, Y.S. (The Corrosion Science Society of Korea)
Publication Information
Corrosion Science and Technology / v.17, no.1, 2018 , pp. 20-29 More about this Journal
Abstract
Ti and its alloys show the excellent corrosion resistance to chloride environments, but they show less corrosion resistance in HCl, $H_2SO_4$, NaOH, $H_3PO_4$, and especially HF environments at high temperature and concentration. In this study, we used the commercially pure titanium and Ti-6Al-4V alloy, and evaluated the effect of the manufacturing process on the electrochemical properties. We used commercial products of rolled and forged materials, and made additive manufactured materials by DMT (Directed Metal Tooling) method. We annealed each specimen at $760^{\circ}C$ for one hour and then air cooled. We performed anodic polarization test, AC impedance measurement, and Mott-Schottky plot to evaluate the electrochemical properties. Despite of the difference of its microstructure of CP-Ti and Ti-6Al-4V alloys by the manufacturing process, the anodic polarization behavior was similar in 20% sulfuric acid. However, the addition of 0.1% hydrofluoric acid degraded the electrochemical properties. Among three kinds of the manufacturing process, the electrochemical properties of additive manufactured CP-Ti, and Ti-6Al-4V alloys were the lowest. It is noted that the test materials showed a Warburg impedance in HF acid environments.
Keywords
commercially pure Ti; Ti-6Al-4V; additive manufactured; polarization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. V. Ramana Rao, Metal Casting: Principles and Practice, pp. 1-3, New Age International, New Delhi (2007).
2 Z. Wusatowski, Fundamentals of Rolling, p. 1, Pergamon Press, Oxford (2013).
3 T. F. Waters, Fundamentals of Manufacturing for Engineers, p. 49 Taylor & Francis, London (2002).
4 ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM, West Conshohocken, PA (2015).
5 I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, p. 245, Springer, New York (2014).
6 D. M. Keicher and W. D. Miller, LENSTM moves beyond RP to direct fabrication, Metal Powder Report, 53:26 (1998).
7 G. K. Lewis, R. Nemec, J. Milewski, D. J. Thoma, D. Cremers, and M. Barbe, Proc. ICALEO '94, p. 17, Laser Institute of America, Orlando (1994).
8 M. A. House, Proc. Solid Freeform Fabrication Symposium, p. 239, Austin, TX (1996).
9 M. J. Donachie Jr., Titanium: a technical guide, 2nd ed., ASM international, Materials Park, Ohio (2000).
10 M. Levy, Corrosion, 23, 236 (1967).   DOI
11 J. Vaughan, A. Alfantazi, J. Electrochem. Soc., 153, B6 (2006).   DOI
12 Z. B. Wang, H. X. Hu, Y. G. Zheng, W. Ke, and Y. X. Qiao, Corros. Sci., 103, 50 (2016).   DOI
13 M. T. Jovanovic, S. Tadic, S. Zec, Z. Miskovic, and I. Bobic, Mater. Des., 27, 192 (2006).   DOI
14 H. Gong, K. Rafi, T. Starr, and B. Stucker, Proc. 24th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conf., pp. 12-14, Austin, TX (2013).
15 S. Takemoto, M. Hattori, M. Yoshinari, E. Kawada, and Y. Oda, Biomaterials, 26, 829 (2005).   DOI
16 R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, Ohio (1994).
17 D. J. Blackwood and L. M. Peter, Electrochim. Acta, 34, 1505 (1989).   DOI
18 A. Robin, J. L. Rosa, and H. R. Z. Sandim, J. Appl. Electrochem., 31, 455 (2001).   DOI
19 D. J. Blackwood, L. M. Peter, and D. E. Williams, Electrochim. Acta, 33, 1143 (1988).   DOI
20 D. J. Blackwood, R. Greef, and L. M. Peter, Electrochim. Acta, 34, 875 (1989).   DOI
21 H. H. Huang, Biomaterials, 23, 59 (2002).   DOI
22 I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, p. 266, Springer, New York (2014).