• 제목/요약/키워드: Hydrodynamic size

검색결과 194건 처리시간 0.026초

유체-다물체 동역학 연성해석을 통한 베어링 윤활해석 (Bearing Hydrodynamic Lubrication Analysis with Fluid-Multi Body Dynamics Coupling)

  • 이정희;김재형;김창완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.430-435
    • /
    • 2008
  • This research deals with the implementation hydrodynamic (HD) lubrication system with an integration of multibodydynamics (MBD) in order to analyze bearing lubrication characteristics such as pressure distribution and oil film thickness dynamically. The HD solver developed newly will transmit force and torque data to MBD solver, and receive position and velocity data from it continuously. After an analysis, we will verify the result with existing commercial software. Moreover, other functions like adjusting size of mesh grid, setting oil hole & groove effects, and consideration of thrust force will be introduced.

  • PDF

Hydrodynamic control on site-structured phytoplankton blooms in a periodically mixed estuary

  • Sin, Yong-Sik
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2001년도 추계학술발표회
    • /
    • pp.137-144
    • /
    • 2001
  • A Plankton ecosystem model was developed to investigate effects of hydrodynamic processes including advection and diffusion on size-structured phytoplankton dynamics in the mesohaline zone of the York River estuarine system, Virginia, USA. The model included 12 state variables representing the distribution of carbon and nutrients in the surface mixed layer. Groupings of autotrophs and heterotrophs were based on cell site and ecological hierarchy Forcing functions included incident radiation, temperature, wind stress, mean How and tide which includes advective transport and turbulent mixing. The ecosystem model was developed in FORTRAN using differential equations that were solved using the 4th order Runge-Kutta technique. The model showed that microphytoplankton blooms during winter-spring resulted from a combination of vertical advection and diffusion of phytoplankton cells rather than in-situ production in the lower York River estuary.

  • PDF

자유수면을 포함한 수퍼요트 주위의 점성유동 해석 (Comparisons of Hydrodynamic Characteristics of Superyacht with Respect to the Variation of Hull Form)

  • 김태윤;현범수
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.337-343
    • /
    • 2008
  • There are various hull types on the mid-size superyachts around $30\;{\sim}\;45m$. In any case, it is important to design the proper hull shape in viewpoint of the reduction of wave resistance, because small vessels such as superyachts are running at relatively higher Froude Number than other merchant ships. FLUENT with a VOF option was employed to investigate the flow fields around the superyachts having three-typical hull types: U-, V-types and catamaran. Overall performances including free surface flow were compared to figure out hydrodynamic characteristics of superyachy by numerical simulation.

제한수역에서 항행선박이 계류중인 선박에 미치는 간섭영향에 관한 연구 (Hydrodynamic Interaction Effects Between Vessels in Confined Waters)

  • 이춘기
    • 한국항해항만학회지
    • /
    • 제35권10호
    • /
    • pp.799-804
    • /
    • 2011
  • 제한수역에서, 정지해 있는 선박 부근을 대형선박이 항행할 경우, 항행선박으로 인하여 정지중인 선박에 미치는 간섭력은 항로설계 및 선박조종운동의 관점에서 보았을 때 대단히 중요한 문제이다. 이 논문에서는 대형 컨테이너 선박이 정지해 있는 선박 부근을 항행할 때, 두 선박간의 횡방향 거리, 항행선박의 속력, 항행선박의 크기 및 수심과 항행선박간의 흘수비(h/d)를 변수로 하여, 항행선박으로 인하여 정지 중인 선박에 미치는 간섭 영향에 대해서 다루었다. 이 연구의 목적은 제한수역에서 항행하는 대형컨테이너 선박과 계류중인 선박간의 상호간 섭력을 수치적으로 계산하고, 계류선박에 미치는 간섭영향을 최소화할 수 있는 항행선박의 속력 및 선박간의 상호거리에 대한 검토를 행하여 항내에서의 안전조종운동에 필요한 기준을 제안하는데 있다.

Test of Stokes-Einstein Formula for a Tracer in a Mesoscopic Solvent by Molecular Dynamics Simulation

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.574-578
    • /
    • 2013
  • In this work, the friction and diffusion coefficients of a tracer in a mesoscopic solvent are evaluated as a function of the tracer size by a hybrid molecular dynamics simulation where solute molecules evolve by Newton's equations of motion but the solvent evolves through the multi-particle collision dynamics. The friction coefficient is shown to scale linearly with the tracer size for larger tracers in accord with predictions of hydrodynamic theories. The diffusion coefficient of tracer is found to be inversely proportional to tracer size. The behavior of Stokes-Einstein formula is validated as a function of tracer size.

해수중의 물질 분리 및 분석을 위한 Fl-FFF의 안정화 기법 (Stabilization Methods to Separate and Analyze Materials in Seawaters using Fl-FFF)

  • 최수훈;이상엽;홍승관;문지희
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.288-294
    • /
    • 2009
  • Flow field-flow fractionation (Fl-FFF) device has been widely used to verify the size and molecular weight of various colloids and organics. The Fl-FFF, however, generally uses carrier solutions with only low to moderate ionic strengths to exclude the high affinity of materials to the membrane under high ionic strength conditions. Thus, materials existing in seawaters have not been accurately analysed based on the hydrodynamic size and molecular weight using current Fl-FFF techniques. The highest ionic strength tested was up to 0.1 M, while seawater ionic strength is about 0.6 M. The aim of this study is to accurately measure the hydrodynamic size of particles under carrier solutions close to seawater conditions with the Fl-FFF. By employing various operating conditions during the Fl-FFF analyses, it was demonstrated that the flow conditions, the concentration of surfactants, and stabilization times were key factors in acquiring compatible data. Results have shown that the cross flow was more influential factor than the channel flow. The concentration of the surfactant was to be at least 0.05% and the minimum 15 hr of stabilization was needed for accurate and reproducible data acquisition under seawater condition.

DAF에서 기포의 크기제어 및 영향분석 (Analysis of Controlling the Size of Microbubble in DAF)

  • 독고석;곽동희;김영환
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.235-241
    • /
    • 2004
  • The dissolved air flotation (DAF) process has been widely used for removing suspended solids with low density in water. It has been known as measuring the size of microbubbles precisely which move upward rapidly in contact zone is difficult. In this study particle counter monitoring (PCM) method is used to measure the rising microbubble after injection from a nozzle. Size and distribution curve of microbubbles are evaluated at different conditions such as pressure drop at intermediate valve, length of pipeline between saturation tank and nozzle and low pressure. And the efficiency is also checked when it collides with different size floc. The experimental results show the following fact. As the final pressure drop occurred closer to a nozzle, the bubble size became smaller. And small bubble collides with large floc as well as small one because of its physical characteristic. However large bubble collides well with large floc rather than small one since hydrodynamic flow in streamline interferes to collide between two. With performing computational process by mathematical model we have analyzed and verified the size effect between bubble and floc. Collision efficiency is the highest when P/B ratio shows in the range of 0.75 < P/B ratio ($R_{particle/Rbubble}$) < 2.0.

과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구 (Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water)

  • 허효;정동욱;방인철
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

물 정수압 저널 베어링의 이론적 해석 (Theoretical Analysis of Water Hydrostatic Journal Bearings)

  • 박성환;박상신
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.71-76
    • /
    • 2011
  • In this study, the nondimensional load capacity of water hydrodynamic journal bearings is calculated. A generalized coordinate formulation is applied to handle the complexity of bearing geometry. A window-based analysis program is developed to analysis the cylindrical hydrostatic bearings. Load capacities are calculated according to some design parameters such as clearance, diameter of orifice, size of recesses and temperature. The results are presented and discussed.

미세채널에서 수력학적 조절을 통한 단분산성 다중 액적 생성 (Microfluidic Preparation of Monodisperse Multiple Emulsion using Hydrodynamic Control)

  • 강성민;최창형;황소라;정재민;이창수
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.733-737
    • /
    • 2012
  • 본 연구는 미세유체의 수력학적 조절을 통한 단분산성 다중 액적 형성방법을 기술한다. 다중 액적을 형성하기 위해 별도의 표면 개질이 필요 없는 co-flowing stream 시스템과 유리 모세관을 이용하여 미세유체 칩을 제작하였다. 유리모세관 미세유체 칩 내부로 0.5 wt% Tween 20이 함유된 증류수, n-hexadecane (5 wt% Span 80), 그리고 10 wt% poly(vinyl alcohol) (PVA) 수용액을 흘려줌으로써 단분산성 다중 액적(W/O/W)을 성공적으로 형성하였다. 더불어, 내부 액적의 개수를 제어하기 위해 수력학적 변수로 작용하는 중간 유체와 최외각 유체의 부피유속을 고정시키고 내부 유체의 부피유속을 조절하는 방법을 사용하여 다양한 내부 액적을 지니는 다중 유화 액적을 성공적으로 완성하였다. 이와 같은 미세유체 시스템을 통해 형성된 다중 액적은 내부물질의 종류에 따라 다양한 화학반응을 위한 하나의 독립된 마이크로 반응기로 사용될 수 있을 것으로 기대한다.