DOI QR코드

DOI QR Code

Microfluidic Preparation of Monodisperse Multiple Emulsion using Hydrodynamic Control

미세채널에서 수력학적 조절을 통한 단분산성 다중 액적 생성

  • Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Hwang, Sora (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Jae-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2012.02.07
  • Accepted : 2012.03.11
  • Published : 2012.08.01

Abstract

This study reports the microfluidic preparation of monodisperse multiple emulsions using hydrodynamic control. To generate multiple emulsions, we fabricate a microfluidic capillary device based on co-flowing stream without any surface modification of microchannels. Based on the system, we can successfully generate multiple emulsions (W/O/W) using water containing 0.5 wt% Tween 20, n-hexadecane with 5 wt% Span 80, and 10 wt% poly (vinyl alcohol) (PVA) aqueous solution, respectively. Furthermore, we control the number of inner droplets by modulation of flow rate of inner fluid at fixed flow rate of middle and outer fluid. The multiple emulsions having precisely controlled inner droplets' size and number can be applicable for multiple chemical reactions as an isolated microreactor.

본 연구는 미세유체의 수력학적 조절을 통한 단분산성 다중 액적 형성방법을 기술한다. 다중 액적을 형성하기 위해 별도의 표면 개질이 필요 없는 co-flowing stream 시스템과 유리 모세관을 이용하여 미세유체 칩을 제작하였다. 유리모세관 미세유체 칩 내부로 0.5 wt% Tween 20이 함유된 증류수, n-hexadecane (5 wt% Span 80), 그리고 10 wt% poly(vinyl alcohol) (PVA) 수용액을 흘려줌으로써 단분산성 다중 액적(W/O/W)을 성공적으로 형성하였다. 더불어, 내부 액적의 개수를 제어하기 위해 수력학적 변수로 작용하는 중간 유체와 최외각 유체의 부피유속을 고정시키고 내부 유체의 부피유속을 조절하는 방법을 사용하여 다양한 내부 액적을 지니는 다중 유화 액적을 성공적으로 완성하였다. 이와 같은 미세유체 시스템을 통해 형성된 다중 액적은 내부물질의 종류에 따라 다양한 화학반응을 위한 하나의 독립된 마이크로 반응기로 사용될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

Supported by : 충남대학교

References

  1. Chu, L. Y., Utada, A. S., Shah, R. K., Kim, J. W. and Weitz, D. A., "Controllable Monodisperse Multiple Emulsions," Angew. Chem., Int. Ed., 46, 8970-8974(2007). https://doi.org/10.1002/anie.200701358
  2. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., "Monodisperse Double Emulsions Generated from a Microcapillary Device," Science, 308, 537-541(2005). https://doi.org/10.1126/science.1109164
  3. Vasiljevic, D., Parojcic, J., Primorac, M. and Vuleta, G., "An Investigation into the Characteristics and Drug Release Properties of Multiple W/O/W Emulsion Systems Containing low Concentration of Lipophilic Polymeric Emulsifier", Int. J. Pharm, 309(1-2), 171-177(2006). https://doi.org/10.1016/j.ijpharm.2005.11.034
  4. Yoshida, K., Sekine, T., Matsuzaki, F., Yanaki, T. and Yamaguchi, M., "Stability of Vitamin A in Oil-in-water-in-oil-type Multiple Emulsions," J. Am. Oil Chem. Soc., 76(2), 195-200(1999).
  5. Lee, M. H., Oh, S. G., Moon, S. K. and Bae, S. Y., "Preparation of Silica Particles Encapsulating Retinol Using O/W/O Multiple Emulsions," J. Colloid Interface Sci., 240(1), 83-89(2001). https://doi.org/10.1006/jcis.2001.7699
  6. Kim, S. H., Jeon, S. J., Jeong, W. C., Park, H. S. and Yang, S. M., "Optofluidic Synthesis of Electroresponsive Photonic Janus Balls With Isotropic Structural Colors," Adv. Mater., 20(21), 4129-4134(2008).
  7. Davis, S. S. and Walker, I. M., "Multiple Emulsions as Targetable Delivery Systems," Methods Enzymol., 149, 51-64(1987). https://doi.org/10.1016/0076-6879(87)49043-5
  8. Lorenceau, E., Utada, A. S., Link, D. R., Cristobal, G., Joanicot, M. and Weitz, D. A., "Generation of Polymersomes from Double- emulsion," Langmuir, 21(20), 9183-9186(2005). https://doi.org/10.1021/la050797d
  9. Pays, K., Giermanska-Kahn, J., Pouligny, B., Bibette, J. and Leal- Calderon, F., "Double Emulsion: How Does Release Occur?," J. Controlled Release, 79, 193-205(2002). https://doi.org/10.1016/S0168-3659(01)00535-1
  10. Mason, T. G. and Bibette, J., "Shear Rupturing of Droplets in Complex Fluids," Langmuir, 13(17), 4600-4613(1997). https://doi.org/10.1021/la9700580
  11. Schmitt, V., Leal-Calderon, F. and Bibette, J., "Preparation of Monodisperse Particles and Emulsions by Controlled Shear," Top. Curr. Chem., 227, 195-215(2003). https://doi.org/10.1007/3-540-36412-9_8
  12. Goubault, C., Pays, K., Olea, D., Gorria, P., Bibette, J., Schmitt, V. and Leal-Calderon, F., "Shear Rupturing of Complex Fluids: Application to the Preparation of Quasi-monodisperse Water-inoil-in-water Double Emulsions," Langmuir, 17, 5184-5188(2001). https://doi.org/10.1021/la010407x
  13. Matsumoto, S., Kita, Y. and Yonezawa, D., "An Attempt at Preparing Water-in-oil-in-water Multiple-phase Emulsions," J. Colloid Interface Sci., 57, 353-361(1976). https://doi.org/10.1016/0021-9797(76)90210-1
  14. Nakashima, T., Shimizu, M. and Kukizaki, M., "Particle Control of Emulsion by Membrane Emulsification and its Application," Adv. Drug Delivery Rev., 45, 47-56(2000). https://doi.org/10.1016/S0169-409X(00)00099-5
  15. Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C. and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127(22), 8058-8063(2005). https://doi.org/10.1021/ja042494w
  16. Vladisvljevic, G. T., Shimizu, M. and Nakashima, T., "Production of Multiple Emulsions for Drug Delivery Systems by Repeated SPG Membrane Homogenization: Influence of Mean Pore Size, Interfacial Tension and Continuous Phase Viscosity," J. Membr. Sci., 284(1-2), 373-383(2006). https://doi.org/10.1016/j.memsci.2006.08.003
  17. Choi, C. H., Yi, H., Hwang, S., Weitz, D. A. and Lee, C. S., "Microfluidic Fabrication of Complex-shaped Microfibers by Liquid Template-aided Multiphase Microflow," Lab Chip, 11(8), 1477-1483(2011). https://doi.org/10.1039/c0lc00711k
  18. Jung, J. H., Choi, C. H., Hwang, T. S. and Lee, C. S., "Efficient in situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device Using Increase of Residence Time of Droplets", Biochip Journal, 3(1), 44-49(2009).
  19. Jung, J. H., Choi, C. H., Hwang, T. S. and Lee, C. S., "In situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17(3), 163-167(2009). https://doi.org/10.1007/BF03218673
  20. Choi, C. H., Jung, J. H., Yoon, T. H., Kim, D. P. and Lee, C. S., "The Effect of Microfluidic Geometry for in situ Generating Monodispersed Hydrogels," J. Chem. Eng. Jpn., 41(7), 649-654(2008). https://doi.org/10.1252/jcej.07WE062
  21. Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). https://doi.org/10.1038/nature05058
  22. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 48, 545-555(2010).
  23. Kobayashi, I., Uemura, K. and Nakajima, M., "Formulation of Monodisperse Emulsions Using Submicron-channel Arrays," Colloids Surf. A: Physicochem Eng. Asp., 296(1-3), 285-289(2007). https://doi.org/10.1016/j.colsurfa.2006.09.015
  24. Fair, R., "Digital Microfluidics: Is a True Lab-on-a-chip Possible?", Microfluidics and Nanofluidics, 3(3), 245-281(2007). https://doi.org/10.1007/s10404-007-0161-8
  25. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., "Rapid Phototyping of Microfluidic Systems in Poly(dimethylsiloxane)," Anal Chem, 70(23), 4974-4984(1998). https://doi.org/10.1021/ac980656z
  26. Hwang, S., Choi, C. H., Kim, H. C., Kim, I. H. and Lee, C. S., "In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions," Polymer(Korea), 36, 1-5(2012). https://doi.org/10.7317/pk.2012.36.2.177
  27. Umbanhowar, P. B., Prasad, V. and Weitz, D. A., "Monodisperse Emulsion Generation Via Drop Break off in a Coflowing Stream," Langmuir, 16(2), 347-351(2000). https://doi.org/10.1021/la990101e

Cited by

  1. Lysozyme Crystallization in Droplet-based Microfluidic Device vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.760
  2. Microfluidic Design of Complex Emulsions vol.15, pp.1, 2014, https://doi.org/10.1002/cphc.201300821
  3. Stagnation of Droplet for Efficient Merging in Microfluidic System vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.106
  4. Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.472
  5. 마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조 vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.597
  6. Spontaneous generation of emulsion droplets by autonomous fluid-pumping using the gas permeability of poly(dimethylsiloxane) (PDMS) vol.38, pp.2, 2012, https://doi.org/10.1080/01932691.2016.1154862