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In this work, the friction and diffusion coefficients of a tracer in a mesoscopic solvent are evaluated as a

function of the tracer size by a hybrid molecular dynamics simulation where solute molecules evolve by

Newton’s equations of motion but the solvent evolves through the multi-particle collision dynamics. The

friction coefficient is shown to scale linearly with the tracer size for larger tracers in accord with predictions of

hydrodynamic theories. The diffusion coefficient of tracer is found to be inversely proportional to tracer size.

The behavior of Stokes-Einstein formula is validated as a function of tracer size.
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Introduction

Recently, Kapral and co-worker have constructed a meso-

scopic model for fluid dynamics.1 In this model, fluid

particles interact through multi-particle collision events

which take place at discrete time intervals. Between such

collision events the particles undergo free streaming motion.

The dynamics conserves mass, momentum and energy and

yields the exact hydrodynamic equations of motion for the

conserved fields on long distance and time scales. One may

consider the dynamics of solute molecules in this meso-

scopic solvent and because the solvent is described at an

effective particle level the solute and solvent molecules

interact through intermolecular forces rather than through

boundary conditions. This leads to a hybrid description of

the dynamics where solute molecules evolve by Newton’s

equations of motion but the solvent evolves through the

multi-particle mesoscale dynamics.2,3

Calculations of the diffusion and friction coefficients by

molecular dynamics (MD) simulations are well-studied pro-

blems that have been addressed many times. Nevertheless,

the computation of the friction coefficient from MD simu-

lations involves a number of subtle issues for finite-size

systems as discussed in several recent papers.4-6 The pro-

blems center around the definition of the friction coefficient

in terms of the projected dynamics and its relation to the

fixed-particle friction coefficient for a massive Brownian

particle. The estimates of the friction coefficients have been

shown to depend on the order in which the mass of the tracer

and the solvent particle number N are taken to infinity. For

finite-size systems one must investigate how large N must be

to obtain a reliable estimate of the friction; this typically

requires very large MD simulations. Similarly, the estimate

of the diffusion coefficient from the velocity autocorrelation

function requires large scale simulations, especially for large

tracers, due to the importance of hydrodynamic contribu-

tions. 

In recent papers,7-9 the friction and diffusion coefficients

of a tracer in a Lennard- Jones (LJ) solvent were evaluated

by equilibrium molecular dynamics simulations in a micro-

canonical ensemble. The solvent molecules of diameter σ1

interact with each other through a repulsive LJ force and the

tracer of diameter σ2 interacts with the solvent molecules

through the same repulsive LJ force except a different LJ

size or diameter parameter. These works were motivated by

determination of the diffusion (D) and friction (ζ) coeffi-
cients of the tracer in the thermodynamic limit (N→∞) and
by test of the Stokes-Einstein (SE) formula:

D = (1)

which is the combination of the Stokes' law:

 (2)

and the Einstein relation:

,  (3)

where k is the Boltzmann constant, T the absolute temper-

ature, σ the radius of the diffusing particle, and C the hydro-

dynamic boundary condition. They found that the behavior

of the friction and diffusion coefficients is well described by

the Einstein relation [Eq. (3)] when the values of σ2/σ1 are

higher than 5 approximately, and the value of ζD/kT
decreases initially as σ2/σ1 increases, and then levels off at

σ2/σ1 independent values of 0.79 (N = 32,000) and 0.91 (N =

320,000), respectively, compared with the prediction by the

Einstein relation ζD/kT = 1 for all σ2/σ1.

The main purpose of this paper is to study the validity of

the SE formula by carrying out simple MD simulations of a

tracer in a mesoscopic solvent and compare with the result in

a large number of LJ solvent molecules (N = 320,000).9 The

friction and diffusion coefficients of a tracer in a mesoscopic

solvent were computed from the force and velocity auto-

correlation functions,10 but the systematic test for the vali-

dity of the SE formula was missed.

kT

Cπησ
---------------

ζ = Cπησ

D = 
kT

ζ
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Multi-Particle Collision Dynamics and Simulation

Details.  The system comprises a tracer with mass M and

phase space coordinates (R,P) interacting with a bath of N

particles with mass m and phase space coordinates (ri,pi).

The system Hamiltonian is

 (4)

 

where the interaction between the tracer and a solvent

particle is repulsive and is given by a truncated Lennard-

Jones potential,

.  (5)

There are no intermolecular forces among the solvent

molecules. Interactions among these particles are taken into

account by mesoscopic multi-particle collision dynamics.1

Multi-particle collisions among the solvent molecules are

carried out at discrete time intervals τ. To carry out such
collisions, the simulation box is partitioned into n3 cells

labeled by ξ and at each time interval τ rotation operators
, chosen at random from set of rotation operators, are

assigned to each cell. In the simulations described in this

paper we use rotations by ± π/2 about a randomly chosen
axis. We have employed random shifting of the grid used to

define the multi-particle collision volumes.11 At any time

instant, a cell will contain a certain number of solvent

molecules with velocities vi'. Let Vξ be the center of mass

velocity of the particles in cell ξ. The post collision
velocities of the particles in the cell are determined by

rotating the particle velocities, relative to the center of mass

velocity Vξ, by the rotation operator , and then adding Vξ

to the result:

 (6)

Such multi-particle collisions are carried out independently

in each cell. 

The simulations were carried out in a cubic box of volume

V = L3 with periodic boundary conditions. If the volume of

the tracer is VB = 4πσ3/3, Vo is defined as the volume of the

system occupied by solvent molecules, Vo = V − VB. The

multi-particle collision cell volume is given by Vξ = V/n
3 =

(L/n)3 = l3. The values of L and N were chosen to fix the

number density of solvent particles at ρs = N/Vo = 2035.42

nm−3 or an average of ten particles per collision cell. 

Newton's equations of motion were integrated using the

velocity Verlet algorithm,12 with a time step of Δt = 0.006776
ps. Multi-particle solvent collisions were carried out in cells

with linear dimension l, every 50 molecular dynamics time

steps so that τ = 50 Δt = 0.3388 ps. The temperature, deter-

mined from the average kinetic energy, was taken to be T =

40.33 K so that the reduced temperature kBT/ε = 1/3. The

results were obtained from ensembles of ten micro-canoni-

cal MD trajectories of length ~100 ns. The statistical errors

in the friction coefficients were determined from block aver-

ages over the ensemble members.

Results and Discussion

We have carried out a hybrid MD simulations for a tracer

in a solvent of N mesoscopic particles for many different

values of N and M/m. The tracer-solvent particle interaction

parameters are σ = 0.3 nm and ε = 1.00604 kJ/mol. The mass
of the solvent particle is m = 3.9948 g/mol. In particular, we

investigated systems with N = 5120, 17280, 40960, 80000

and 327680 particles. The mass ratio M/m is taken to have

the values M/m ≈ 100, 150, 250, 400 and 1090. We also

investigated the case where mass ratio is infinity or the tracer

was fixed by a holonomic constraint.13

The normalized momentum auto-correlation function can

be determined from the Langevin equation and decays expo-

nentially in the following form:

,  (7)

where ζ1 is the first friction constant.
A time dependent friction coefficient ζu(t) is defined from

the force autocorrelation function by14

,  (8)

and through the Laplace transforms of the projected and

unprojected force autocorrelation functions,15-17 in t space,

the following relation is obtained

.  (9)

The friction coefficient may then be estimated from the extra-

polation (ζ2) of the long time decay of the time dependent
friction coefficient ζu(t) to t = 0 or from the decay rate (ζ3) of
ζu(t).
The friction coefficients of the tracer of σ = 0.3 nm as a

function of N in the cases of M/m = 1090 and ∞ are listed in
Table 1. The infinity mass of the tracer is involved with the

momentum auto-correlation function, Eq. (7), and the time

dependent friction coefficient, Eq. (8). It is found that the

momentum of the whole system carried out by the infinite

H = 
P
2
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Table 1. Friction coefficients (kg/mol·ps) of the tracer of σ = 0.3
nm as a function of N in the cases of M/m = 1090 and ∞.
Uncertainties in the last reported digit(s) are given in parenthesis

N 5120 17280 40960 80000 327680

ζ1
1090 0.702(22) 0.618(28) 0.615(23) 0.602(41) 0.603(20)

∞ 0.743(10) 0.793(15) 0.946(40) 1.172(115) 2.533(172)

ζ2
1090 0.661(14) 0.613(11) 0.606(11) 0.611(8) 0.605(6)

∞ 0.665(17) 0.614(6) 0.600(10) 0.609(25) 0.604(1)

ζ3
1090 0.678(34) 0.713(33) 0.869(221) 1.512(228) 48.85(173)

∞ 0.694(24) 0.657(30) 0.800(101) 1.160(470) 3.984(779)
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mass or by the constraint method13 MD simulations is not

conserved since the momentum of the tracer is not well

defined with zero velocity or infinite mass. In spite of this,

the momentum of the fixed particle is defined as the nega-

tive of the total momentum of the solvent particles.5,6 For

this reason for M = ∞, it is difficult to determine the friction
coefficient from the decay rates, ζ1 and ζ3, of Cp(t) in Eq. (7)

and ζu(t) in Eq. (8), especially for very large N. On the other
hand, the extrapolation (ζ2) of the long time decay of the
time dependent friction coefficient ζu(t) to t = 0 is reliable for
M = ∞.
A useful trick for the difficulty with M = ∞ is to put the

mass of the tracer as 1090 g/mol, and then the momentum of

the system is conserved: The magnitude of the mass of the

tracer is on the order of 90 and its velocity is on the order of

–90, but its momentum has a finite value and is equal to the

negative of the total momentum of the solvent particles. The

friction coefficients obtained for M/m = 1090 are reliable

except ζ3 for very large N. The failure of ζ3 for M/m = 1090

comes from the difficulty in determining the slope for large

N due to the small value of the slope and relatively large

statistical error since the slopes scale as 1/N.

As N increases more than ~30000 solvent particles, the

friction coefficients, ζ1 and ζ2, reach an asymptotic value.
MD simulations on systems with a smaller number of

particles will yield poor estimates of the friction coefficient.

Therefore the best friction coefficients of the tracer are ζ1
and ζ2 for M/m = 1090 in a solvent of N = 327680 mesoscopic

particles as listed in Table 2 as a function of σ.
The hydrodynamic estimate of the friction coefficient, ζh,

is obtained through the Stoke’s law, Eq. (2), from the com-

puted viscosity of the mesoscopic solvent η = 4.70 × 10−4

kg/m·s18 with C = 4 (the slip boundary condition), and listed

in Table 2.

Diffusion coefficients (D) are determined from either the

mean square displacement (MSD) of the tracer by

 (10)

or the infinite time integral of the velocity autocorrelation

(VAC) function by

.  (11)

The other estimation for diffusion constant comes from

D(t) of Eq. (11) as function of t−1/2.2 Hydrodynamic contri-

butions to the velocity autocorrelation function give rise to a

t3/2 long time tails19 and consequently 

.  (12)

The diffusion coefficient can be obtained by extrapolating

D(t) as t−1/2 → 0. The results in Figure 1 are in accord with

this functional form, indicating the presence of a hydro-

dynamic component in the velocity autocorrelation function.

The diffusion coefficients of the tracer of σ = 0.3 nm in a
solvent of N = 327680 mesoscopic particles determined from

the mean square displacement (MSD) of Eq. (10), the

integral of the velocity autocorrelation function (VAC) of

Eq. (11), and the long time tail analysis of Eq. (12) are listed

in Table 3 for M/m = 100, 150, 250 and 400. Furthermore, D

is nearly independent of mass for these parameter values

within the statistical uncertainty. 

In order to estimate the diffusion coefficient (D) of the

tracer as a function of the size of the tracer, MD simulations

for the tracers of M/m = 100 and σ = 0.1, 0.5, 0.7, 0.9, 1.0,
1.5, and 2.0 nm (ε = 1.00604 kJ/mol) in a solvent of N =

327680 mesoscopic particles are further carried out. The

results for D obtained from MSD are shown in Table 2.

D = 
1

6
---  

t ∞→
lim

d r t( ) r 0( )–
2〈 〉

dt
----------------------------------

D t( ) = 1
3
---  

0

t

∫ d′t v t′( ) v 0( )⋅〈 〉

D t( ) D α0–≈ t

Figure 1. The long time tail of the velocity autocorrelation
function of the tracer of σ = 0.3 nm in a solvent of N = 327680
mesoscopic particles for M/m = 100 (solid line), 150 (dotted line),
250 (dashed line), and 400 (long-dashed line). 

Table 2. Friction coefficients (ζ1, ζ2, and ζh, kg/mol·ps) of the tracer for M/m = 1090 and diffusion coefficients (DMD and DSE, 10
−4 nm2/ps) of

the tracer for M/m = 100 in a solvent of N = 327680 mesoscopic particles as a function of σ. Uncertainties in the last reported digit(s) are
given in parenthesis

σ 0.1 0.3 0.5 0.7 0.9 1.0 1.5 2.0

ζ1 0.133(3) 0.603(20) 1.20(5) 1.78(6) 2.40(9) 2.73(10) 4.21(12) 5.93(18)

ζ2 0.134(2) 0.605(16) 1.16(4) 1.81(8) 2.44(11) 2.65(13) 4.32(15) 6.02(22)

ζh 0.356 1.067 1.778 2.490 3.201 3.557 5.335 7.113

DMD 30.3(48) 6.12(38) 3.06(27) 2.04(20) 1.45(18) 1.20(10) 0.703(80) 0.479(80)

DSE 9.429 3.143 1.886 1.347 1.048 0.9429 0.6286 0.4714
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Using the Stokes-Einstein relation, Eq. (1), another set of

diffusion coefficient (DSE) is obtained from the hydrodynamic

estimate of the friction coefficient, ζh, and listed in Table 2.

Figure 2 shows the friction coefficient ζ1 obtained from
our hybrid MD simulations as a function of σ. One sees that
the friction coefficient varies linearly with in accord with the

prediction of the Stokes formula, Eq. (2). The hydrodynamic

estimate of the friction versus with the slip boundary condi-

tion (C=4) using the independently computed viscosity η =
4.70 × 10−4 kg/m·s of the mesoscopic solvent is also plotted

in the same figure. The slopes are different from each other:

0.315 × 10−2 and 0.591 × 10−2 kg/m·nm·s, respectively. If the

hydrodynamic boundary condition is chosen as C = 2.1

instead of 4, the two lines coincide with each other. 

The diffusion coefficients DMD obtained from our hybrid

MD simulations and DSE from the prediction of the SE

formula, Eq. (1), are also plotted in Figure 2. DMD is inverse-

ly proportional to s but the slope of 1/DMD versus σ is slight-
ly different from that of 1/DSE (1.09 × 104 and 1.06 × 104 ps/

nm3). The ratio of DMD/DSE approaches to 1 as σ increases as
expected from hydrodynamic theories.

Finally we plot ζD/kT as a function of σ in Figure 2. The

values of ζMDDMD/kT for all s are very close to 1, staring 1.2

at σ = 0.1 nm, decreasing slowly, and reaching at an asymp-

totic value of 0.85 at σ = 2 nm. That is, the prediction of the
Einstein relation for the tracer in a mesoscopic solvent is

almost valid for all the values of σ except σ = 0.1 nm. The
primary reason for this is considered as that the mesoscopic

solvent molecule has 0 size. This observation is remarkably

different from the case of the tracer in a LJ solvent8,9 which

shows that the obtained value of ζD/kT is somewhat large
(~2.5) at the size ratio between the tracer and solvent mole-

cule (σ2/σ1) of 0.1, decreases initially as σ2/σ1 increases, and

then levels off at σ2/σ1 = 5-10 independent values of 0.79 (N

= 32,000) and 0.91 (N = 320,000), respectively, compared

with the prediction by the Einstein relation ζD/kT = 1 for all
σ2/σ1.

Conclusion

In this work we have presented a detailed investigation of

the friction and diffusion behavior of a Lennard-Jones tracer

in a mesoscopic solvent. This work was motivated by the

determination of the lower bound of the tracer size above

which the motion of the tracer is Brownian. The criterion

chosen to locate these bounds is that the diffusion coefficient

of the tracer obeys the Einstein relation between D and ζ.
We found that ζ can be determined correctly from the long
time exponential decay rate (ζ1) of the momentum auto-
correlation function CP(t) or from the extrapolation (ζ2) of

the long time decay of the time dependent friction coeffi-

cient ζu(t) to t = 0. The friction coefficients of the tracer

varies linearly with σ in accord with the prediction of the
Stokes formula but shows a smaller slope than the Stokes

prediction. Diffusion coefficients are obtained from three

different routes and it is found that D is nearly independent

of mass of the tracer within the statistical uncertainty. The

behavior of 1/DMD versus σ is essentially linear for all the
range of σ. The prediction from the Stokes-Einstein formula
DSE slightly underestimates the diffusion coefficient of the

tracer. The values of ζMDDMD/kT for all σ are very close to 1,
which indicates that the prediction of the Einstein relation

for the tracer in a mesoscopic solvent is almost valid for all

the values of σ except σ = 0.1 nm, from which the tracer is
considered as a Brownian particle. However, this observation

is remarkably different from the case of the tracer in a LJ

solvent8,9 which shows that the obtained value of ζD/kT then
levels off at σ2/σ1 = 5-10 independent values of 0.79 and

0.91, respectively.
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