• Title/Summary/Keyword: Hydrodynamic forces

Search Result 439, Processing Time 0.02 seconds

2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling Cylinders on a Free Surface of a Water of Finite Depth

  • Rhee, K.P.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 1977
  • The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface of a fluid of a finite depth are calculated by distributing singularities on the immersed body surface. And the Haskind-Newman relation in a fluid of a finite depth is derived. The wave exciting force of the cylinder to an oscillation is also calculated by using the above relation. The method is applied to a circular cylinder swaying in a water of finite depth, and then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a good agreement with those by earlier investigators such as Bai, Keil, and Yeung. Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0 and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to represent by a mapping function. The results reveal that the hydrodynamic forces in heave increase as the depth of a water decrease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies. The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape than the water depth.

  • PDF

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.

A Numerical Study on the Characteristics of the Supercavitation and Hydrodynamic Forces Generated in a Supercavitating Underwater Vehicle with Angle of Attack (받음각을 갖는 초공동 수중 운동체에서 발생하는 초월공동과 유체력 특성에 대한 수치적 연구)

  • Jeon, Yunho;Park, Jeonghoon;Jeon, Kwansoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.214-224
    • /
    • 2021
  • Recently, as the technology of the supercavitating underwater vehicle is improved, the necessity of research for maneuvering characteristics of the supercavitating underwater vehicle has emerged. In this study, as a preliminary step to analyzing the maneuverability of a supercavitating underwater vehicle, the characteristics of cavity shapes and hydrodynamic forces generated in a supercavitating underwater vehicle with an angle of attack were evaluated numerically. First, the geometry was designed by modifying the shape of the existing supercavitating underwater vehicle. The continuity and the Navier-stokes equations are numerically solved, and turbulent eddy viscosity is solved by the k-ω SST model. The results present the characteristics of cavity shape and the hydrodynamic forces of the designed geometry with an angle of attack.

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

Maneuvering Hydrodynamic Forces Acting on Manta-type UUV Using CFD

  • Lee, Seong-Eun;Lee, Sung-Wook;Bae, Jun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.237-244
    • /
    • 2020
  • In this study, we investigate surge force, heave force, and pitch moment, which are vertical plane hydrodynamics acting on Manta-type unmanned underwater vehicles (UUVs), using a model test and computational fluid dynamics (CFD) simulation. Assessing the maneuvering hydrodynamic characteristic of an underwater glider in the initial design stage is crucial. Although a model test is the best approach for obtaining the maneuvering hydrodynamic derivatives for underwater vehicles, numerical methods, such as Reynolds averaged Navier-Stokes (RANS) equations, have been used owing to their efficiency in terms of time and cost. Therefore, we conducted an RANS-based CFD calculation and a model test for Manta-type UUVs. In addition, we conducted a validation study through a comparison with a model test conducted at a circular water channel (CWC) in Korea Maritime & Ocean University Furthermore, two RANS solvers (Star-CCM+ and OpenFOAM) were used and compared. Finally, the maneuvering hydrodynamic forces obtained from the static drift and resistance tests for a Manta-type UUV were presented.

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.

Measurement of Hydrodynamic Pressure Distribution between a Piston and Cylinder

  • Kim, Y.H.;Park, T.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.419-420
    • /
    • 2002
  • The piston-cylinder mechanism is widely adopted in the hydraulic machine components. In these cases, the hydrodynamic pressures are generated in the clearance gap between the piston and cylinder under lubrication action of the oils. Under the eccentric condition of the piston in the cylinder bore, the asymmetric pressure distributions in the circumferential direction result in lateral forces on the piston. When the lateral forces act as increasing the piston eccentricity, excessive wear can be occurs in the cylinder bore and piston. In this paper, the hydrodynamic pressures generated in the clearance are measured using a stationary piston and moving cylinder apparatus. The experimental results showed that the hydrodynamic pressure distributions are highly affected by the eccentricity of the piston.

  • PDF

Response of square tension leg platforms to hydrodynamic forces

  • Abou-Rayan, A.M.;Seleemah, Ayman A.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.115-135
    • /
    • 2012
  • The very low natural frequencies of tension leg platforms (TLP's) have raised the concern about the significance of the action of hydrodynamic wave forces on the response of such platforms. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that coupling between various degrees of freedom has insignificant effect on the displacement responses. Moreover, for short wave periods (i.e., less than 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on the wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about its original position. Also, for short wave periods, a higher mode contribution to the pitch response accompanied by period doubling appeared to take place. For long wave periods, (12.5 and 15 sec.), this higher mode contribution vanished after very few cycles.

The Safety of Maneuverability Based on the Hydrodynamic Forces Acting on ship hull under the Lateral Berthing

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.625-630
    • /
    • 2003
  • In order to keep the safety of maneuverability under the lateral berthing, it is necessary to estimate the magnitudes and properties of the hydrodynamic forces acting on ship hull quantitatively. In this paper, CFD technique is used to calculate the steady lateral force according to the water depth for Wigley model under the unsteady lateral berthing. The numerical results are analysed into the steady lateral force and the transitional lateral force, and some of reviews for the safety of maneuverability relating to the lateral berthing are discussed based on the computed hydrodynamic forces.

Hydrodynamic Forces produced by the Swaying Oscillation of Cylinders with Chine Sections on the Free Surface. (배골형단면(背骨型斷面) 주상체(柱狀體)의 좌우동요(左右動搖)에 있어서의 동유체역학적(動流體力學的) 힘에 관하여)

  • J.H.,Hwang;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1974
  • Hydrodynamic forces and moments produced by the swaying oscillation on the free surface were exactly calculated by Ursell-Tasai method for the cylinders with Kim's chine form sections and the sway responses of the cylinders of those chine form sections among the regular beam sea were also calculated. The results of the computation were compared with those of Lewis form sections. It is concluded that the effects of the section form on the added mass, and damping are small, if the section forms had same beam-draft ratio and sectional area coefficient in the case of sway motion. It is also known that the above little effects of section shapes on the basic hydrodynamic forces do not effect on the sway motion responses of cylinderical bodies among the regular beam sea. The sway motion responses of cylinderical bodies are varied linearly with the wave numbers.

  • PDF