• Title/Summary/Keyword: Hydrodynamic effect

Search Result 596, Processing Time 0.029 seconds

Hydrodynamic coupling distance between a falling sphere and downstream wall

  • Lin, Cheng-Chuan;Huang, Hung-Tien;Yang, Fu-Ling
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In solid-liquid two phase flow, the knowledge of how descending solid particles affected by the presence of downstream wall is important. This work studies at what interstitial distance the velocity of a vertically descending sphere is affected by a downstream wall as a consequence of wall-modified hydrodynamic forces through a validated dynamic model. This interstitial distance-the hydrodynamic coupling distance ${\delta}_c-is$ found to decay monotonically with the approach Stokes number St which compares the particle inertia to viscous drag characterized by the quasi-steady Stokes' drag. The scaling relation ${\delta}_c-St-1$ decays monotonically as literature below the value of St equal to 10. However, the faster diminishing rate is found above the threshold value from St=10-40. Furthermore, an empirical relation of ${\delta}_c-St$ shows dependence on the drop height which clearly indicates the non-negligible effect of unsteady hydrodynamic force components, namely the added mass force and the history force. Finally, we attempt a fitting relation which embedded the particle acceleration effect in the dependence of fitting constants on the diameter-scaled drop height.

Minimization of Hydrodynamic Pressure Effect on the Ultraprecision Mirror Grinding

  • Lee, Sun-Kyu;Miyamoto, Yuji;Kuriyahawa, Tsunemoto;Syoji, Katsuo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2005
  • This paper describes an investigation about the fluid delivering method that minimizes the generation of hydrodynamic pressure and improves the grinding accuracy. Traditionally, grinding fluid is delivered for the purpose of cooling, chip flushing and lubrication. Hence, a number of conventional investigations are focused on the delivering method to maximize fluid flux into the contact arc between the grinding wheel and the work piece. It is already known that hydrodynamic pressure generates due to this fluid flux, and that it affects the overall grinding resistance and machining accuracy. Especially in the ultra-precision mirror grinding process that requires extremely small amount of cut per pass, its influence on the machining accuracy becomes more significant. Therefore, in this paper, a new delivering method of grinding fluid is proposed with focus on minimizing the hydrodynamic pressure effect. Experimental data indicates that the proposed method is effective not only to minimize the hydrodynamic pressure but also to improve the machining accuracy.

The Numerical Study on the Flow Characteristics in Two-Dimensional Moonpool in Waves

  • Lee, Sang-Min;Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • The objective of this study is to examine the nonlinear fluid characteristics near and inside a moonpool in various sea conditions. We estimate the flow of the free surface in a moonpool taking into account the viscosity effect and the hydrodynamic forces that affects a moonpool and hull through CFD calculations. The comparison of horizontal forces per wave length shows that the hydrodynamic force is greater for the long wave length than short wave length, and the greatest hydrodynamic force acts on the moonpool when the wave length is equal to the ship's length. The horizontal force decreases as the wave amplitude decreases, and the hydrodynamic force acting on the moonpool in ${\lambda}=LBP$ is 10 times that in ${\lambda}=LBP/3$. The free surface demonstrates the piston mode, in which it oscillates up and down while remaining essentially flat, and the rise of the free surface level increases as the wave length increases. We can assume that the hydrodynamic force acting on the moonpool increases owing to the effect of a strong vortex for ${\lambda}=LBP$ and owing to the rise of the free surface level for ${\lambda}=LBP{\times}2$.

Numerical study of hydrodynamic interaction on a vessel in restricted waterways

  • Lee, Chun-Ki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The hydrodynamic interaction between ship and bank can't be neglected when a vessel is app- roached toward the tip of a wedge-shaped bank in restricted waterways, such as in a harbor, near some fixed obstacles, or in a narrow channel. In this paper, the characteristic features of the hydrodynamic interaction acting on a slowly moving vessel in the proximity of a wedge-shaped bank are described and illustrated, and the effects of water depth and the spacing between ship and wedge-shaped bank are summarized and discussed based on the slender body theory. From the theoretical results, it indicated that the hydrodynamic interactions decrease as wedge-shaped bank of angle ${\beta}$ in-creases. For water depth to draft ratio less than about 2.0, the hydrodynamic interactions between ship and bank in-crease sharply as h/d decreases, regardless of the wedge-shaped bank of angle ${\beta}$. Also, for lateral separation more than about 0.2L between ship and wedge-shaped bank, it can be concluded that the bank effects decrease largely as the separation increases.

Finite Element Analysis for the Penetration Phenomena of Shaped Charge Jets using Hydrodynamic Theory (Hydrodynamic 이론을 이용한 성형작약탄두 제트의 관통 현상에 관한 유한요소 해석)

  • Kang, Youngku
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • In this paper, the penetration process of Shaped charge jet(SCJ) was simulated through finite element analysis to obtain physical quantities such as jet incidence velocity, penetration rate, and penetration increment. As a result of applying these physical quantities to the hydrodynamic theory, it was confirmed that the penetration efficiency of the jet with a high incident velocity is higher than that of the following slow jet. This efficiency decreased sharply when the jet was slower than the hydrodynamic limit(HL). On the other hand, the comparison of penetration increment and jet consumption over time showed that the length extension effect should be considered for SCJ's theoretical penetration analysis.

On the Hydrodynamic Forces Acting on a Partially Submerged Bag

  • Lee, Gyeong-Joong
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.140-155
    • /
    • 1994
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially in the water and the end points of it oscillate. SES(Surface Effect Ship) has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. The present paper describes the formulation of this problem and treats a linearized problem. The computations of the radiation problem for an oscillating bag are shown in comparison with the case that the bag is treated as a rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

The Effect of Oil Supply Conditions on the Dynamic Performance of a Hydrodynamic Journal Bearing

  • Son, Sang-Ik;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.6-12
    • /
    • 2009
  • In this study, the effect of oil supply conditions on the dynamic performance of a hydrodynamic journal bearing is analyzed numerically. Axial length, circumferential length and location of oil grooves are considered as oil supply conditions. The perturbation equations of the perturbed film contents are obtained by applying Elrod's universal equation implementing JFO film rupture / reformation boundary conditions to Lund's infinitesimal perturbation method. The dynamic coefficients of a hydrodynamic journal bearing are calculated by solving the perturbation equations, and the linear stability analysis is carried out by using those for a variety of oil supply conditions.

Effect of Hydrodynamic Condition on the Electrochemical Behavior of Various Metals in 3.5 wt% NaCl Solution

  • Pan, Szu-Jung;Hadinata, Samuel-Sudibyo;Kao, Ruey-Chy;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.218-225
    • /
    • 2015
  • The electrochemical behaviors of various metals with and without diamond-like-carbon (DLC) coating in 3.5 wt% NaCl solution were investigated. The effect of hydrodynamic conditions was focused by employing a rotating disc electrode (RDE). The experimental results showed that each bare metal had a more positive corrosion potential and a higher corrosion rate due to enhanced oxygen transport at the higher rotating speed of the RDE. DLC coating caused a substantial increase in the corrosion resistance of all metals studied. However, localized corrosion was still found in the DLC-coated metal at sites where deposition defects existed. Surface morphology examination was performed after the electrochemical test to confirm the roles of hydrodynamic conditions and DLC coating.

Temperature and diameter effect on hydrodynamic characteristic of surfactant drag-reducing flows

  • Indartono Y.S.;Usui H.;Suzuki H.;Komoda Y.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Hydrodynamic characteristic of surfactant drag-reducing flows is still not fully understood. This work investigated the temperature and diameter effect on hydrodynamic characteristic of cationic surfactant drag reducing flows in pipes. Solution of oleyl bishydroxyethyl methyl ammonium chloride (Ethoquad O/12), 900 ppm, as a cationic surfactant and sodium salicylate (NaSal), 540 ppm, as a counter-ion was tested at 12, 25, 40, and $50^{\circ}C$ in pipes with diameter of 13, 25, and 40 mm. Drag reduction effectiveness of this surfactant solution was evaluated in 25 mm pipe from 6 to $75^{\circ}C$. Rheological characteristic of this solution was measured by stress control type rheometer with cone-and-plate geometry. Scale-up laws proposed by previous investigators were used to evaluate the flow characteristic of the solution. It was found that this surfactant solution has clear DR capability until $70^{\circ}C$. Result of this work suggested that temperature has a significant influence in changing the hydrodynamic entrance length of surfactant drag reducing flows. From rheological measurement, it was found that the solution exhibits Shear Induced Structure at all temperatures with different degree of peak viscosity and critical shear rate.

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.