• Title/Summary/Keyword: Hydrodynamic calculation

Search Result 172, Processing Time 0.027 seconds

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

Motion Analysis of Two Floating Platforms with Mooring and Hawser Lines in Tandem Moored Operation by Combined Matrix Method and Separated Matrix Method

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.1-15
    • /
    • 2005
  • The motion behaviors including hydrodynamic interaction and mechanical coupling effects on multiple-body floating platforms are simulated by using a time domain hull/mooring/riser coupled dynamics analysis program. The objective of this study is to evaluate off-diagonal hydrodynamic interaction effects and mechanical coupling effects on tandem moored FPSO and shuttle taker motions. In the multiple-body floating platforms interaction, hydrodynamic coupling effects with waves and mechanical coupling effects through the connectors should be considered. Thus, in this study, the multiple-body platform motions are calculated by Combined Matrix Method (CMM) as well as Separated Matrix Method (SMM). The advantage of the combined matrix method is that it can include all the 6Nx6N full hydrodynamic and mechanical interaction effects among N bodies. Whereas, due to the larger matrix size, the calculation time of Combined Matrix Method (CMM) is longer than the Separated Matrix Method (SMM). On the other hand, Separated Matrix Method (SMM) cannot include the off-diagonal 6x6 hydrodynamic interaction coefficients although it can fully include mechanical interactions among N bodies. To evaluate hydrodynamic interaction and mechanical coupling effects, tandem moored FPSO and shuttle tanker is simulated by Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The calculation results give a good agreement between Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The results show that the Separated Matrix Method (SMM) is more efficient for tandem moored FPSO and shuttle tanker. In the numerical calculation, the hydrodynamic coefficients are calculated from a 3D diffraction/radiation panel program WAMIT, and wind and current forces are generated by using the respective coefficients given in the OCIMF data sheet.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.

The Hydrodynamic Interaction Effects between Two Barges on the Motion Responses (상호작용을 고려한 두 바아지의 운동응답)

  • S.P.,Ann;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-34
    • /
    • 1987
  • In this paper, a three dimensional singularity distribution method is applied to investigate the hydrodynamic interactions between two barges floating on a free surface of a deep water. The results show that the hydrodynamic interaction forces are important in the calculation responses of two barges floating in each other's vicinity. Furthermore the trends of hydrodynamic forces due to the motion of body itself are different from those of a single barged, and the motions of the seaward barge can sometimes exceed those of the seaward barged.

  • PDF

Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS (RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구)

  • Lee, Sungwook
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

Hydrodynamic modeling of semi-planing hulls with air cavities

  • Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.500-508
    • /
    • 2015
  • High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

The Interaction Effect Acting on a Vessel in the Proximity of Bank Wall (측벽근방을 항해하는 대형선박에 미치는 측벽의 영향)

  • 이춘기
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.197-202
    • /
    • 2004
  • It is well known that the hydrodynamic interaction forces between ship and bank wall affect ship manoeuvring motion. This paper deals with the interaction effect acting on a ship navigating closely in the proximity of bank wail. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic interaction forces between ship and bank wail is applied. The hydrodynamic interaction forces acting on a ship during passing through the proximity of the bank wail are predicted to evaluate an influence of these interaction forces on ship manoeuvrability. The calculation method used in this paper will be useful for prediction of ship manoeuvrability at the initial stage of design, for automatic control system of ship in confined waterways, for discussion of marine traffic control system and for construction of harbour.

  • PDF

The Interaction Effect Acting on a Ship Hull in the Proximity of Bank Wall (측벽근방을 항해하는 대형선박에 미치는 측벽의 영향)

  • Lee, Chun-Ki;Park, Hain-Il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.333-337
    • /
    • 2004
  • It is well known that the hydrodynamic interaction forces between ship and bank wall affect ship manoeuvring motion This paper deals with the interaction effect acting on a ship navigating closely in the proximity of bank wall. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic interaction forces between ship and bank wall is applied. The hydrodynamic interaction forces acting on a ship during passing through the proximity of the bank wall are predicted to evaluate an influence of these interaction forces on ship manoeuvrability. The calculation method used in this paper will be useful for prediction of ship manoeuvrability at the initial stage of design, for automatic control system of ship in confined waterways, for discussion of marine traffic control system and for construction of harbour.

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.