• Title/Summary/Keyword: Hydrodynamic Stability

Search Result 231, Processing Time 0.023 seconds

전기 저항법을 이용한 Micro Particle Counter Micro Fluidic Device 개발

  • Lee Jun;Yun Deok-Won;Chae Ho-Cheol;Han Chang-Su
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.134-138
    • /
    • 2005
  • Recently many researches related with biotechnology are processed and it is the situation that research about micro fluidic devices is active. Micro fluidic devices has been one of the most widely used devices for the analysis in biotechnology because they have many advantages, flexibility, transparency, thermal and electrical stability, nontoxic, etc. In this study, micro fluidic device with PDMS is developed for particle counter which separates a small quantity of particles, The principle of micro particle counter is electrical-impedance method, and it was also applied hydrodynamic flow focusing. It is more efficient method to analyzing particles furthermore it can be applied to cell count ins for biotechnology.

  • PDF

Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review

  • Oyegbile, Benjamin;Ay, Peter;Narra, Satyanarayana
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Flocculation is a widely used phase separation technique in industrial unit processes and is typically observed in many natural flow systems. Advances in colloidal chemistry over the past decades has vastly improved our understanding of this phenomenon. However, in many practical applications, process engineering still lags developments in colloidal science thereby creating a gap in knowledge. While significant progress has been made in environmental process engineering research over the past decades, there is still a need to align these two inter-dependent fields of research more closely. This paper provides a comprehensive review of the flocculation mechanism from empirical and theoretical perspective, discuss its practical applications, and examines the need and direction of future research.

Experimental Study on Effects of Syngas Addition in Flame Propagation and Stability of DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Kwon, Ohboong;Yun, Jinhan;Kee, Sangin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

수중주거시설 동적계류안정성 설계 연구

  • Park, Sang-Uk;Lee, Han-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.130-133
    • /
    • 2019
  • 수중(submerged)에 부유(floating)식으로 계류되는 거주목적의 구조체 설계(design basis) 관련 연구로서 계류안정성 모델(수중가옥)을 만들고 거동을 정수압적 유체역학적으로 수치분석한다. 임의 가정한 수중가옥의 1)배수량 규모 2) 함체형상에 따른 환경압 하에서의 계류안정성을 a)부력중심, b)무게중심과 가변하중의 변위에 따른 c)함체 기울기를 MATLAB프로그램을 이용하여 산정한다. 나아가 수중가옥의 동적(hydrodynamic) 계류안정성을 임의 시공 장소인 독도의 기상청 울릉도-독도 부이 최근 관측치를 근거로 OrcaFlex프로그램을 이용하여 분석하므로써 수중가옥의 수중건축 시공간상 계류안정성 설계요건(design basis)을 구체화 한다.

  • PDF

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

Tidal Flat Simulation Characteristics of the Hydrodynamic Models (해수유동모형의 조간대 모의 특성)

  • Kang, Ju-Whan;Park, Seon-Jung;Kim, Yang-Seon;So, Jae-Kwi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.357-370
    • /
    • 2009
  • EFDC, ESCORT and MIKE21 models are applied at the Gomso Bay to investigate each models' facilities of tidal flat simulation. Comparisons with observation data show that all models simulate hydrodynamic phenomena and tidal flat well. CPU time and WCM are examined to evaluate the efficiency of the models, and the effects of flooding/drying depth and bottom friction are examined to analyze models' facilities of simulating tidal flat. The EFDC model is considered to be fairly good in accuracy, stability and applicability, it is, however, poor in efficiency and its complexity. While the ESCORT model is superior to the EFDC in simulation of tidal flat, it is inferior to the EFDC in CPU time and simulation of bottom friction. The MIKE21 model is excellent in efficiency, but some numerical noise would be detected at low water, not permitting correction of the model.

Hydrodynamic Performance of a 2,500-ton Class Trimaran

  • Kang, kuk-Jin;Lee, Chun-Ju;Kim, Sun-Young;Park, Yun-Rak;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.23-36
    • /
    • 2002
  • This paper describes the powering, seakeeping and maneuvering performances for a 2,500-ton class trimaran. Influence of the side-hull forms and location of those in longitudinal and transverse direction to resistance performance was systematically investigated by a series of model tests and numerical calculations. It was found that the longitudinal location of side-hulls was the most influential design parameter to the resistance performance of the trimaran and the optimum location of side-hull depends on ship speeds. When the side-hull stem is located near the primary wave hollow generated by the main hull, the trimaran shows the best resistance performance. Powering performance of the trimaran is superior to those of similar mono-hull ships. Seakeeping model tests for the trimaran were executed and the results were compared with the theoretical results of a similar mono-hull ship. Generally speaking, seakeeping performance of the trimaran is superior to that of a mono-hull ship. In particular, pitching and rolling performance of the trimaran is excellent, which is due to the increased length and breadth. Maneuvering model tests using a HPMM equipment were executed to evaluate the maneuvering performance of the trimaran. Maneuvering simulation was performed using the maneuvering coefficients from the model tests. The results show that the control ability of heading angle and the direction keeping stability of the trimaran is excellent, even though the turning performance is rather worse compared to those of a similar mono-hull ship.

An Experimental Study on Effect of Angle of Attack on Elevator Control Force for Underwater Vehicle with Separate Fixed Fins (별도의 고정타를 갖는 수중운동체 승강타의 제어력에 미치는 받음각의 영향에 대한 실험적 연구)

  • Park, CJeong-Hoon;Shin, Myung-Sub;Choi, Jae-Yeop;Hwang, Jong-Hyun;Shin, Young-Hun;Kim, Yeon-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.243-252
    • /
    • 2016
  • Conventionally, the static angle of attack and static elevator tests are carried out separately to estimate hydrodynamic stability derivatives of underwater vehicles. However, it is difficult to verify the interaction between the angle of attack and elevator angle in such cases. In this study, we perform a static elevator with angle of attack test where both the angle of attack and elevator angle are varied simultaneously. The experimental results show that the angle of attack has an influence on the elevator control force and that this tendency is dependent on the sense in which the angle of attack and elevator angle are varied. We predict level flight performance using hydrodynamic derivatives estimated through this experiment. The predictions considering the effect of angle of attack show good agreement with trials conducted in the open sea.