References
- Pietsch W. Agglomeration processes: Phenomena, technologies, equipment. Weinheim: Wiley-VCH; 2002.
- Farinato RS, Huang S-Y, Hawkins P. Polyelectrolyte-assisted dewatering. In: Farinato RS, Dubin PL, eds. Colloid-Polymer Interactions: From Fundamentals to Practice. New York (NY): John Wiley & Sons; 1993. p. 3-50.
- Lick W. Sediment and contaminant transport in surface waters. Boca Raton (FL): CRC Press; 2008.
- Addai-Mensah J, Prestidge CA. Structure formation in dispersed systems. In: Dobias B, Stechemesser H, eds. Coagulation and Flocculation Second: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 135-216.
- Lick W, Huang H, Jepsen R. Flocculation of fine-grained sediments due to differential settling. J. Geophys. Res. Oceans 1993;98:10279-10288. https://doi.org/10.1029/93JC00519
- Runkana V, Somasundaran P, Kapur PC. A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 2006;61:182-191. https://doi.org/10.1016/j.ces.2005.01.046
- Prat OO, Ducoste JJ. Simulation of flocculation in stirred vessels lagrangian versus eulerian. Chem. Eng. Res. Des. 2007;85:207-219. https://doi.org/10.1205/cherd05001
- Prat OP, Ducoste JJ. Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics. Chem. Eng. Sci. 2006;61:75-86. https://doi.org/10.1016/j.ces.2004.11.070
- Curran SJ, Black RA. Taylor-vortex bioreactors for enhanced mass transport. In: Chaudhuri J, Al-Rubeai M, eds. Bioreactors for tissue engineering: Principles, design and operation. dordrecht: Springer; 2005. p. 47-85.
- Wu W. Computational river dynamics. London: CRC Press; 2008.
- Sievers M, Stoll SM, Schroeder C, et al. Sludge dewatering and aggregate formation effects through taylor vortex assisted flocculation. Sep. Sci. Technol. 2008;43:1595-1609. https://doi.org/10.1080/01496390801973888
- Tooby PF, Wick GL, Isaacs JD. The motion of a small sphere in a rotating velocity field: A possible mechanism for suspending particles in turbulence. J. Geophys. Res. 1977;82:2096-2100. https://doi.org/10.1029/JC082i015p02096
- Taboada-Serrano P, Chin C-J, Yiacoumi S, Tsouris C. Modeling aggregation of colloidal particles. Curr. Opin. Colloid Interface Sci. 2005;10:123-132. https://doi.org/10.1016/j.cocis.2005.07.003
- Biggs S. Aggregate structures and solid-liquid separation processes. KONA Powder Part J 2006;24:41-53. https://doi.org/10.14356/kona.2006008
- Gregory J, Guibai L. Effects of dosing and mixing conditions on polymer flocculation of concentrated suspensions. Chem. Eng. Commun. 1991;108:3-21. https://doi.org/10.1080/00986449108910948
- Yukselen MA, Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs. J. Chem. Technol. Biotechnol. 2004;79:782-788. https://doi.org/10.1002/jctb.1056
- Lee KE, Morad N, Teng TT, Poh BT. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012;203:370-386. https://doi.org/10.1016/j.cej.2012.06.109
- Hjorth M, Christensen ML. Evaluation of methods to determine flocculation procedure for manure separation. Trans ASABE 2008;51:2093-2103. https://doi.org/10.13031/2013.25391
- Logan BE. Environmental transport processes. Hoboken (NJ): John Wiley & Sons; 2012.
- Milligan TG, Hill PS. A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behaviour. J. Sea Res. 1998;39:227-241. https://doi.org/10.1016/S1385-1101(97)00062-2
- Gregory J. Fundamentals of flocculation. Crit. Rev. Environ. Control 1989;19:185-230. https://doi.org/10.1080/10643388909388365
- Popa I, Papastavrou G, Borkovec M. Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers. Phys. Chemsitry Chem. Phys. 2010;12:4863-4871. https://doi.org/10.1039/b925812d
- Gregory J. The role of colloid interactions in solid-liquid separation. Water Sci. Technol. 1993;27:1-17. https://doi.org/10.1021/es00038a700
- Bratby J. Coagulation and flocculation in water and wastewater treatment. London: IWA Publishing; 2006.
- Bache DH, Gregory R. Flocs in water treatment. London: IWA Publishing; 2007.
- Benjamin MM, Lawler DF. Water quality engineering: Physical/chemical treatment processes. Hoboken (NJ): John Wiley & Sons; 2013.
- Partheniades E. Cohesive sediments in open channels: Properties, transport and applications. Oxford: Butterworth- Heinemann; 2009.
- Gregory J. Particles in water: Properties and processes. Boca Raton (FL): CRC Press; 2006.
- Shammas NK. Coagulation and flocculation. In: Wang LK, Hung Y-T, Shammas NK, eds. Physicochemical Treatment Processes. Totowa (NJ): Humana Press; 2005. p. 103-139.
- Marshall JS, Li S. Adhesive particle flow: A discrete-element approach. New York (NY): Cambridge University Press; 2014.
- Lebovka NI. Aggregation of charged colloidal particles. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state I. Heidelberg: Springer; 2013. p. 57-96.
- Nopens I. Modelling the activated sludge flocculation process: A population balance approach [dissertation]. Ghent: Univ. of Ghent; 2005.
- Moody G, Norman P. Chemical pre-treatment. In: Tarleton S, Wakeman R, eds. Solid-Liquid Separation: Scale-up of industrial equipment. Oxford: Elsevier; 2005. p. 38-81.
- Laskowski JS, Pugh RJ. Dispersions stability and dispersing agents. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 115-170.
- Lu S, Ding Y, Guo J. Kinetics of fine particle aggregation in turbulence. Adv. Colloid. Interface Sci. 1998;78:197-235. https://doi.org/10.1016/S0001-8686(98)00062-1
- Wilkinson KJ, Reinhardt A. Contrasting roles of natural organic matter on colloidal stabilization and flocculation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG, eds. Flocculation in Natural and Engineered Environmental Systems. Boca Raton (FL): CRC Press; 2005. p. 143-170.
- Bagster DF. Aggregate behaviour in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 26-58.
- Smith-Palmer T, Pelton R. Flocculation of particles. In: Somasundaran P, ed. Encyclopedia of Surface and Colloidal Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2584-2599.
- Schramm LL. Emulsions, foams, and suspensions. Weinheim: Wiley VCH; 2005.
- Gregory J. Stability and flocculation of suspensions. In: Shamlou AP, ed. Process. Solid-Liquid Suspensions. Oxford: Butterworth-Heinemann; 1993. p. 59-92.
- Grasso D, Subramaniam K, Butkus M, et al. A review of non-dlvo interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 2002;1:17-38. https://doi.org/10.1023/A:1015146710500
- Gregory J. Flocculation of fine particles. In: Mavros P, Matis KA, eds. Innovations in floatation technology. Dordrecht: Springer; 1992. p. 101-124.
- Hanson AT, Cleasby JL. The effects of temperature on turbulent flocculation: Fluid dynamics and chemistry. J. Am. Water Works Assoc. 1990;82:56-73. https://doi.org/10.1002/j.1551-8833.1990.tb07053.x
- Kissa E. Dispersions: Characterization, testing, and measurement. New York (NY): Marcel Dekker; 1999.
- Gregory J. Flocculation fundamentals. In: Tadros T, ed. Encyclopedia of colloid and interface science. Heidelberg: Springer; 2013. p. 459-491.
- Van Leussen W. Aggregation of particles, settling velocity of mud flocs-a review. In: Dronkers J, Van Leussen W, eds. Physical processes in estuaries. Heidelberg: Springer; 2011. p. 347-403.
- Thomas DN, Judd SJ, Fawcett N. Flocculation modelling: A review. Water Res. 1999;33:1579-1592. https://doi.org/10.1016/S0043-1354(98)00392-3
- Atkinson JF, Chakraborti RK, Benschoten JE. Effects of floc size and shape in particle aggregation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG (eds) Flocculation in natural and engineered environmental systems. Boca Raton (FL): CRC Press; 2005. p. 95-120.
- Kramer TA, Clark MM. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 1999;216:116-126. https://doi.org/10.1006/jcis.1999.6305
- Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. In: Hart BT, Sly PG, eds. Sediment/Water Interactions. Heidelberg: Springer; 1992. p. 1-16.
- Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. Hydrobiologia 1992;235-236:1-16. https://doi.org/10.1007/BF00026196
- Lawler FD. Physical aspects of flocculation: From microscale to macroscale. Water Res. 1993;27:165-180.
- Kruster KA. The influence of turbulence on aggregation of small particles in agitated vessels [dissertation]. Eindhoven: Technical Univ. Eindhoven; 1991.
- Lick W, Lick J. Aggregation and disaggregation of fine-grained lake sediments. J. Gt. Lakes Res. 1998;14:514-523.
- Tsai C-H, Iacobellis S, Lick W. Flocculation of fine-grained lake sediments due to a uniform shear stress. J. Gt. Lakes Res. 1987;13:135-146. https://doi.org/10.1016/S0380-1330(87)71637-2
- Wang L, Marchisio DL, Vigil RD, Fox RO. CFD simulation of aggregation and breakage processes in laminar taylor-couette flow. J. Colloid Interface Sci. 2005;282:380-396. https://doi.org/10.1016/j.jcis.2004.08.127
- Gregory J. Floc formation and floc structure. In: Newcombe G, Dixon D, eds. Interface science in drinking water treatment: Theory and applications. London: Academic Press; 2006. p. 25-43.
- Letterman RD, Amirtharajah A, O'Meila CR. Coagulation and flocculation. In: Edzwald J, ed. Water Quality & Treatment: A Handbook on Drinking Water. New York (NY): McGraw- Hill; 2010. p. 6.1-6.66.
- Bridgeman J, Jefferson B, Parsons SA. The development and application of CFD models for water treatment flocculators. Adv. Eng. Softw. 2010;41:99-109. https://doi.org/10.1016/j.advengsoft.2008.12.007
- Bridgeman J, Jefferson B, Parsons S. Assessing floc strength using CFD to improve organics removal. Chem. Eng. Res. Des. 2008;86:941-950. https://doi.org/10.1016/j.cherd.2008.02.007
- Camp TR, Stein PC. Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng. 1943;30:219-237.
- Winterwerp JC. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul Res. 1998;36:309-326. https://doi.org/10.1080/00221689809498621
- Zhu Z. Theory on orthokinetic flocculation of cohesive sediment: A review. J. Geosci. Environ. Prot. 2014;2:13-23.
- Bridgeman J, Jefferson B, Parsons SA. Computational fluid dynamics modelling of flocculation in water treatment: A review. Eng Appl. Comput. Fluid Mech. 2009;3:220-241.
- Korpijärvi J, Laine E, Ahlstedt H. Using CFD in the study of mixing in coagulation and flocculation. In: Hahn HH, Hoffmann E, Odegaard H (eds) Chemical Water Wastewater Treatment VI. Heidelberg: Springer; 2000. p. 89-99.
- Kramer TA, Clark MM. Influence of strain-rate on coagulation kinetics. J. Environ. Eng. 1997;123:444-452. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(444)
- Muhle K. Floc stability in laminar and turbulent flow. In: Dobias B, ed. Coagulation and Flocculation: Theory and Applications. New York (NY): Marcel Dekker; p. 355-390.
- Svarovsky L. Solid-liquid separation. 4th ed. Woburn, MA: Butterworth-Heinemann; 2000.
- Ives KJ. Experiments in orthokinetic flocculation. In: Gregory J, ed. Solid-Liquid Separation. London: Ellis Horwood Ltd; 1984. p. 196-220.
- Belfort G (1986) Fluid mechanics and cross-flow membrane filtration. In: Muralidhara HS, ed. Advances in Solid-Liquid Separation. Columbus (OH): Battelle Press; 1986. p. 165-189.
- Spicer PT. Shear-induced aggregation-fragmentation: Mixing and aggregate morphology effects [dissertation]. Cincinnati: Univ. of Cincinnati; 1997.
- Falk L, Commenge J. Characterization of mixing and segregation in homogeneous flow systems. In: Hessel V, Renken A, Schouten JC, Yoshida J, eds. Handbook of Micro Reactors. Weinheim: John Wiley & Sons; 2009. p. 147-171.
- Concha F. Solid-liquid separation in the mining industry. Heidelberg: Springer; 2014.
- Farrow JB, Swift JD. A new procedure for assessing the performance of flocculants. Int. J. Miner Process 1996;46:263-275. https://doi.org/10.1016/0301-7516(95)00084-4
- Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner Eng. 2015;70:20-25. https://doi.org/10.1016/j.mineng.2014.08.019
- Hendricks DW. Fundamentals of water treatment unit processes: Physical, chemical, and biological. Boca Raton (FL): CRC Press; 2011.
- Shamlou AP, Hooker-Titchener N. Turbulent aggregation and breakup of particles in liquids in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 1-25.
- Hogg R. Flocculation and dewatering. Int. J. Miner Process 2000;58:223-236. https://doi.org/10.1016/S0301-7516(99)00023-X
- Bergenstahl B. Emulsions. In: Beckett ST, ed. Physico-chemical aspects of food processing. glasgow: Blackie Academic & Professional; 1995. p. 49-64.
- Son M, Hsu T. Flocculation model of cohesive sediment using variable fractal dimension. Environ. Fluid Mech. 2008;8:55-71. https://doi.org/10.1007/s10652-007-9050-7
- Adachi Y, Kobayashi A, Kobayashi M. Structure of colloidal flocs in relation to the dynamic properties of unstable suspension. Int. J. Polym Sci. 2012;1-14.
- Tambo N. Optimization of flocculation in connection with various solid-liquid separation processes. In: Hahn H, Klute R, eds. Chemical water wastewater treatment. Heidelberg: Springer; 1990. p. 17-32.
- Yusa M, Suzuki H, Tanaka S. Separating liquids from solids by pellet flocculation. J. Am. Water Works Assoc. 1975;67:397-402.
- Yusa M, Igarashi C. Compaction of flocculated material. Water Res. 1984;18:811-816. https://doi.org/10.1016/0043-1354(84)90264-1
- Higashitani K, Shibata T, Matsuno Y. Formation of pellet flocs from kaolin suspension and their properties. J. Chem. Eng. Jpn. 1987;20:152-157. https://doi.org/10.1252/jcej.20.152
- Yusa M, Gaudin AM. Formation of pellet-like flocs of kaolinite by polymer chains. Am. Ceram Soc. Bull. 1964;43:402-406.
- Yusa M. Mechanisms of pelleting flocculation. Int. J. Miner Process 1977;4:293-305. https://doi.org/10.1016/0301-7516(77)90010-2
- Wang X, Jin P, Yuan H, et al. Pilot study of a fluidized- pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant. Water Sci. Technol. 2004;49:81-88.
- Gang Z, Ting-lin H, Chi T, et al. Settling behaviour of pellet flocs in pelleting flocculation process: Analysis through operational conditions. Water Sci. Technol. 2010;62:1346-1352. https://doi.org/10.2166/wst.2010.429
- Bahr S. Experimental studies of fundamental processes of pelleting flocculation [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2006.
- Walaszek W. Investigation upon structure of pellet flocs against process performance as a tool to optimize sludge conditioning [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2007.
- Panswad T, Polwanich S. Pilot plant application of pelletisation process on low-turbidity river water. J. Water Supply Res. Technol-AQUA 1998;47:236-244.
- Glasgow L. Physicochemical influences upon floc deformability, density, and permeability. In: 7th world congress of chemical engineering; 2005 Jul 10-14; Glasgow, Scotland.
- Gillberg L, Hanse B, Karlsson I, et al. About water treatment., Helsingborg: Kemira Kemwater; 2003.
- Yusa M. Pelleting flocculation in sludge conditioning - An overview. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems. Amsterdam: Elsevier; 1987. p. 755-763.
- Hemme A, Polte R, Ay P. Pelleting flocculation: The alternative to traditional sludge conditioning. Aufbereit-Tech 1995;36:226-235.
- Amirtharajah A, Tambo N. Mixing in water treatment. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 3-34.
- Higashitani K, Kubota T. Pelleting flocculation of colloidal latex particles. Powder Technol. 1987;51:61-69. https://doi.org/10.1016/0032-5910(87)80040-2
- Vigdergauz VE, Gol'berg GY. Kinetics of mechanical floccule synaeresis. J. Min. Sci. 2012;48:347-353. https://doi.org/10.1134/S1062739148020165
- Walaszek W, Ay P. Extended interpretation of the structural attributes of pellet flocs in pelleting flocculation. Miner Eng. 2006;19:1397-1400. https://doi.org/10.1016/j.mineng.2006.03.004
- Walaszek W, Ay P. Porosity and interior structure analysis of pellet-flocs. Colloids Surf. Physicochem Eng. Asp. 2006;280:155-162. https://doi.org/10.1016/j.colsurfa.2006.01.049
- Walaszek W, Ay P. Pelleting flocculation: An alternative technique to optimise sludge conditioning. Int. J. Miner Process 2005;76:173-180.
- Tambo N, Wang CC. The mechanism of pellet flocculation in fluidized-bed operations. J. Water Supply Res. Technol- AQUA 1993;42:67-76.
- Hjorth M. Flocculation and solid-liquid separation of animal slurry: Fundamentals, control and application [dissertation]. Odense: Univ. of Southern Denmark; 2009.
- Wang XH, Jiang C. Papermaking part II: Surface and colloid chemsitry of papermaking process. In: Somasundaran P, ed. Encyclopedia of Surface and Colloid Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 4435-4451.
- Xiao H. Fine clay flocculation. In: Somasundaran P, ed. Encyclopedia of surface and colloid science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2572-2583.
- Petzold G, Schwarz S. Polyelectrolyte complexes in flocculation applications. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state II. Heidelberg: Springer; 2013. p. 25-65.
- Moudgil BM. Selection of flocculants for solid-liquid separation process. In: Muralidhara HS, ed. Advances in solid-liquid separation. Columbus (OH): Battelle Press; 1986. p. 191-204.
- Böhm N, Kulicke W-M. Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins. Colloid Polym. Sci. 1997;275:73-81. https://doi.org/10.1007/s003960050054
- Besra L, Sengupta DK, Roy SK, Ay P. Polymer adsorption: Its correlation with flocculation and dewatering of kaolin suspension in the presence and absence of surfactants. Int. J. Miner Process 2002;66:183-202. https://doi.org/10.1016/S0301-7516(02)00064-9
- Hjorth M, Christensen ML, Christensen PV. Flocculation, coagulation, and precipitation of manure affecting three separation techniques. Bioresour Technol. 2008;99:8598-8604. https://doi.org/10.1016/j.biortech.2008.04.009
- Hjorth M, Jorgensen BU. Polymer flocculation mechanism in animal slurry established by charge neutralization. Water Res. 2012;46:1045-1051. https://doi.org/10.1016/j.watres.2011.11.078
- Lee CH, Liu JC. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res. 2000;34:4430-436. https://doi.org/10.1016/S0043-1354(00)00209-8
- Lagaly G. From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B, ed. Coagulation and flocculation: Theory and applications. New York (NY): Marcel Dekker; 1993. p. 427-494.
- Lagaly G. From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B, Stechemesser H, eds. Coagulation and flocculation: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 519-600.
- Coufort C, Bouyer D, Line A. Flocculation related to local hydrodynamics in a taylor-couette reactor and in a jar. Chem. Eng. Sci. 2005;60:2179-2192. https://doi.org/10.1016/j.ces.2004.10.038
- Boyle JF, Manas-Zloczower I, Feke DL. Hydrodynamic analysis of the mechanisms of agglomerate dispersion. Powder. Technol. 2005;153:127-133. https://doi.org/10.1016/j.powtec.2004.08.010
- Attia YA. Flocculation. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 277-308.
- Rulyov NN. Physicochemical microhydrodynamics of ultradisperse systems. In: Starov VM, ed. Nanoscience: Colloidal and Interfacial Aspects. Boca Raton (FL): CRC Press; 2010. p. 969-995.
- Zlokarnik M. Stirring: Theory and practice. Weinheim: Wiley-VCH; 2008.
- Baldyga J, Bourne JR. A fluid mechanical approach to turbulent mixing and chemical reaction part II micromixing in the light of turbulence theory. Chem. Eng. Commun. 1984;28:243-258. https://doi.org/10.1080/00986448408940136
- Thomas SF, Rooks P, Rudin F, et al. Swirl flow bioreactor containing dendritic copper-containing alginate beads: A potential rapid method for the eradication of escherichia coli from waste water streams. J. Water Process Eng. 2015;5:6-14. https://doi.org/10.1016/j.jwpe.2014.10.010
- Kresta SM, Brodkey RS. Turbulence in mixing applications. In: Paul EL, Atiemo-Obeng VA, Kresta SM, eds. Handbook of Industrial Mixing: Science and Practice. Hoboken (NJ): John Wiley & Sons; 2004. p. 19-87.
- Thoenes D. Chemical reactor development: From laboratory synthesis to industrial production. Dordrecht: Springer; 1998.
- Sparks T. Fluid mixing in rotor/stator mixers [dissertation]. Cranfield: Cranfield Univ.; 1996.
- Baldyga J, Pohorecki R. Turbulent micromixing in chemical reactors: A review. Chem. Eng. J. Biochem. Eng. 1995;58:183-195. https://doi.org/10.1016/0923-0467(95)02982-6
- Oldshue JY, Trussell RR. Design of impellers for mixing. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in coagulation and flocculation. Denver (CO): American water works association; 1991. p. 309-342.
- Kockmann N. Transport phenomena in micro process engineering. Heidelberg: Springer; 2008.
- Maggi F. Flocculation dynamics of cohesive sediment [dissertation]. Delft: Delft Univ. of Technology; 2005.
- Baldyga J, Bourne JR. Turbulent mixing and chemical reactions. Weinheim: Wiley-VCH; 1999.
- Wu H, Patterson GK. Laser-doppler measurements of turbulent- flow parameters in a stirred mixer. Chem. Eng. Sci. 1989;44:2207-2221. https://doi.org/10.1016/0009-2509(89)85155-3
- Kobayashi M, Adachi Y, Ooi S. Breakup of fractal flocs in a turbulent flow. Langmuir 1999;15:4351-4356. https://doi.org/10.1021/la980763o
- Bouyer D, Line A, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J. 2004;50:2064-2081. https://doi.org/10.1002/aic.10242
- Bouyer D, Coufort C, Line A, Do-Quang Z. Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. J. Colloid Interface Sci. 2005;292:413-428. https://doi.org/10.1016/j.jcis.2005.06.011
- He J, Liu J, Yuan Y, Zhang J. A novel quantitative method for evaluating floc strength under turbulent flow conditions. Desalination Water Treat. 2014;56:1975-1984.
- Argyropoulos CD, Markatos NC. Recent advances on the numerical modelling of turbulent flows. Appl. Math Model 2015;39:693-732. https://doi.org/10.1016/j.apm.2014.07.001
- Bubakova P, Pivokonsky M, Filip P. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol. 2013;235:540-549. https://doi.org/10.1016/j.powtec.2012.11.014
- Bemmer GG. Agglomeration in suspension: A study of mechanisms and kinetics [dissertation]. Delft: Delft Univ. of Technology; 1979.
- Spicer PT, Pratsinis SE. Shear-induced flocculation: The evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996;30:1049-1056. https://doi.org/10.1016/0043-1354(95)00253-7
- Soos M, Moussa AS, Ehrl L, et al. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J. Colloid Interface Sci. 2008;319:577-589. https://doi.org/10.1016/j.jcis.2007.12.005
- Carissimi E, Rubio J. The flocs generator reactor-fgr: A new basis for flocculation and solid-liquid separation. Int. J. Miner Process 2005;75:237-247. https://doi.org/10.1016/j.minpro.2004.08.021
- Carissimi E, Miller JD, Rubio J. Characterization of the high kinetic energy dissipation of the flocs generator reactor (FGR). Int. J. Miner Process 2007;85:41-49. https://doi.org/10.1016/j.minpro.2007.08.001
- Yuan Y, Farnood RR. Strength and breakage of activated sludge flocs. Powder Technol. 2010;199:111-119. https://doi.org/10.1016/j.powtec.2009.11.021
- Jarvis P, Jefferson B, Gregory J, Parsons SA. A review of floc strength and breakage. Water Res. 2005;39:3121-3137. https://doi.org/10.1016/j.watres.2005.05.022
- Tambo N, François RJ. Mixing, breakup and floc characteristics. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 256-281.
- Yeung AKC, Pelton R. Micromechanics: A new approach to studying the strength and breakup of flocs. J. Colloid Interface Sci. 1996;184:579-585. https://doi.org/10.1006/jcis.1996.0654
- Liu SX, Glasgow LA. Aggregate disintegration in turbulent jets. Water Air Soil Pollut. 1997;95:257-275. https://doi.org/10.1007/BF02406169
- Glasgow LA, Liu X. Response of aggregate structures to hydrodynamic stress. AIChE J. 1991;37:1411-1414. https://doi.org/10.1002/aic.690370913
- Wang G, Zhou S, Joshi JB, et al. An energy model on particle detachment in the turbulent field. Miner Eng. 2014;69:165-169. https://doi.org/10.1016/j.mineng.2014.07.018
- Bache DH. Floc rupture and turbulence: A framework for analysis. Chem. Eng. Sci. 2004;59:2521-2534. https://doi.org/10.1016/j.ces.2004.01.055
- Partheniades E. Turbulence, flocculation and cohesive sediment dynamics. In: Mehta AJ, ed. Nearshore and estuarine cohesive sediment transport. Washington DC: American Geophysical Union; 1993. p. 40-59.
- Hogg R. Flocculation and dewatering of fine-particle suspension. In: Dobias B, Stechemesser H, eds. Coagulation and flocculation: Second Edition (FL): CRC Press, Boca Raton; 2005. p. 805-850.
- Serra T, Casamitjana X. Modelling the aggregation and break-up of fractal aggregates in a shear flow. Appl. Sci. Res 1997;59:255-268. https://doi.org/10.1023/A:1001143707607
- McConnachie G. Turbulence intensity of mixing in relation to flocculation. J. Environ. Eng. 1991;117:731-750. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:6(731)
- Haralampides K, McCorquodale AJ, Krishnappan BG. Deposition properties of fine sediment. J. Hydraul Eng. 2003;129:230-234. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:3(230)
- Dobias B, Von Rybinski W. Stability of dispersions. In: Dobias B, Qiu X, Von Rybinski W, eds. Solid-liquid dispersions. New York (NY): Marcel Dekker; 1999. p 244-278.
- Peng SJ, Williams RA. Control and optimisation of mineral flocculation and transport processes using on-line particle size analysis. Miner Eng. 1993;6:133-153. https://doi.org/10.1016/0892-6875(93)90128-A
- Neumann LE, Howes T. Aggregation and breakage rates in the flocculation of estuarine cohesive sediments. In: Maa JPY, Sanford LP, Schoellhamer DH, eds. Estuarine and coastal fine sediment dynamics. Amsterdam: Elsevier; 2007. p. 35-53.
- Oshinowo L, Elsaadawy E, Vilagines R. CFD modeling of oil-water separation efficiency in three-phase separators. In: 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries; 2014 Jun 17-19; Trondheim, Norway. Oslo: SINTEF Academic Press; 2015. p. 207-216.
- Nopens I. Improved prediction of effluent suspended solids in clarifiers through integration of a population balance model. In: IWA Particle Separation Conference; 2007 Jul 9-12; Toulouse, France.
- Heath AR, Koh PTL. Combined population balance and CFD modelling of particle aggregation by polymeric flocculant. In: 3rd International Conference on CFD in the Minerals and Process Industries; 2003 Dec 10-12; Melbourne, Australia. p. 339-344.
- Torfs E. Different settling regimes in secondary settling tanks: Experimental process analysis, model development and calibration [dissertation]. Ghent: Ghent Univ.; 2015.
- Torfs E, Vesvikar M, Nopens I. Improved predictions of effl uent suspended solids in wastewater treatment plants by integration of a PBM with computational fluid dynamics. In: 5th population balance modelling conference; 2013 Sep 11-13; Bangalore, India.
- Lee BJ, Molz F. Numerical simulation of turbulence-induced flocculation and sedimentation in a flocculant-aided sediment retention pond. Env. Eng. Re.s 2014;19:165-174. https://doi.org/10.4491/eer.2014.19.2.165
Cited by
- Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm vol.21, pp.2, 2017, https://doi.org/10.1007/s10404-017-1856-0
- polymer flocculation and growth in Taylor–Couette flows vol.14, pp.42, 2018, https://doi.org/10.1039/C8SM01694A
- Computer Simulation Elucidates Yeast Flocculation and Sedimentation for Efficient Industrial Fermentation vol.13, pp.5, 2018, https://doi.org/10.1002/biot.201700697
- Fragmentation of magnetic particle aggregates in turbulence vol.3, pp.8, 2016, https://doi.org/10.1103/physrevfluids.3.084605
- Experimental and CFD Studies of the Hydrodynamics in Wet Agglomeration Process vol.2, pp.3, 2016, https://doi.org/10.3390/chemengineering2030032
- Prevalence and public health implications of mycotoxigenic fungi in treated drinking water systems vol.17, pp.4, 2016, https://doi.org/10.2166/wh.2019.122
- The Impact of Local Hydrodynamics on High-Rate Activated Sludge Flocculation in Laboratory and Full-Scale Reactors vol.8, pp.2, 2020, https://doi.org/10.3390/pr8020131
- Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment vol.8, pp.5, 2020, https://doi.org/10.3390/pr8050527
- 생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구 vol.36, pp.3, 2016, https://doi.org/10.15681/kswe.2020.36.3.185
- Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment vol.13, pp.18, 2016, https://doi.org/10.3390/ma13183951
- Laboratory model for plastic fragmentation in the turbulent ocean vol.6, pp.2, 2016, https://doi.org/10.1103/physrevfluids.6.024601
- Ionic strength and polyelectrolyte molecular weight effects on floc formation and growth in Taylor-Couette flows vol.17, pp.5, 2016, https://doi.org/10.1039/d0sm01517b
- A Population Balance Model for Shear-Induced Polymer-Bridging Flocculation of Total Tailings vol.12, pp.1, 2016, https://doi.org/10.3390/min12010040
- Functionalized chitosan-magnetic flocculants for heavy metal and dye removal modeled by an artificial neural network vol.282, pp.no.pb, 2016, https://doi.org/10.1016/j.seppur.2021.120002