DOI QR코드

DOI QR Code

Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review

  • Oyegbile, Benjamin (Brandenburgische Technische Universitat Cottbus-Senftenberg) ;
  • Ay, Peter (Department of Technical Environment and Climate Protection, Lubeck University of Applied Sciences) ;
  • Narra, Satyanarayana (Brandenburgische Technische Universitat Cottbus-Senftenberg)
  • Received : 2015.08.01
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

Flocculation is a widely used phase separation technique in industrial unit processes and is typically observed in many natural flow systems. Advances in colloidal chemistry over the past decades has vastly improved our understanding of this phenomenon. However, in many practical applications, process engineering still lags developments in colloidal science thereby creating a gap in knowledge. While significant progress has been made in environmental process engineering research over the past decades, there is still a need to align these two inter-dependent fields of research more closely. This paper provides a comprehensive review of the flocculation mechanism from empirical and theoretical perspective, discuss its practical applications, and examines the need and direction of future research.

Keywords

References

  1. Pietsch W. Agglomeration processes: Phenomena, technologies, equipment. Weinheim: Wiley-VCH; 2002.
  2. Farinato RS, Huang S-Y, Hawkins P. Polyelectrolyte-assisted dewatering. In: Farinato RS, Dubin PL, eds. Colloid-Polymer Interactions: From Fundamentals to Practice. New York (NY): John Wiley & Sons; 1993. p. 3-50.
  3. Lick W. Sediment and contaminant transport in surface waters. Boca Raton (FL): CRC Press; 2008.
  4. Addai-Mensah J, Prestidge CA. Structure formation in dispersed systems. In: Dobias B, Stechemesser H, eds. Coagulation and Flocculation Second: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 135-216.
  5. Lick W, Huang H, Jepsen R. Flocculation of fine-grained sediments due to differential settling. J. Geophys. Res. Oceans 1993;98:10279-10288. https://doi.org/10.1029/93JC00519
  6. Runkana V, Somasundaran P, Kapur PC. A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 2006;61:182-191. https://doi.org/10.1016/j.ces.2005.01.046
  7. Prat OO, Ducoste JJ. Simulation of flocculation in stirred vessels lagrangian versus eulerian. Chem. Eng. Res. Des. 2007;85:207-219. https://doi.org/10.1205/cherd05001
  8. Prat OP, Ducoste JJ. Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics. Chem. Eng. Sci. 2006;61:75-86. https://doi.org/10.1016/j.ces.2004.11.070
  9. Curran SJ, Black RA. Taylor-vortex bioreactors for enhanced mass transport. In: Chaudhuri J, Al-Rubeai M, eds. Bioreactors for tissue engineering: Principles, design and operation. dordrecht: Springer; 2005. p. 47-85.
  10. Wu W. Computational river dynamics. London: CRC Press; 2008.
  11. Sievers M, Stoll SM, Schroeder C, et al. Sludge dewatering and aggregate formation effects through taylor vortex assisted flocculation. Sep. Sci. Technol. 2008;43:1595-1609. https://doi.org/10.1080/01496390801973888
  12. Tooby PF, Wick GL, Isaacs JD. The motion of a small sphere in a rotating velocity field: A possible mechanism for suspending particles in turbulence. J. Geophys. Res. 1977;82:2096-2100. https://doi.org/10.1029/JC082i015p02096
  13. Taboada-Serrano P, Chin C-J, Yiacoumi S, Tsouris C. Modeling aggregation of colloidal particles. Curr. Opin. Colloid Interface Sci. 2005;10:123-132. https://doi.org/10.1016/j.cocis.2005.07.003
  14. Biggs S. Aggregate structures and solid-liquid separation processes. KONA Powder Part J 2006;24:41-53. https://doi.org/10.14356/kona.2006008
  15. Gregory J, Guibai L. Effects of dosing and mixing conditions on polymer flocculation of concentrated suspensions. Chem. Eng. Commun. 1991;108:3-21. https://doi.org/10.1080/00986449108910948
  16. Yukselen MA, Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs. J. Chem. Technol. Biotechnol. 2004;79:782-788. https://doi.org/10.1002/jctb.1056
  17. Lee KE, Morad N, Teng TT, Poh BT. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012;203:370-386. https://doi.org/10.1016/j.cej.2012.06.109
  18. Hjorth M, Christensen ML. Evaluation of methods to determine flocculation procedure for manure separation. Trans ASABE 2008;51:2093-2103. https://doi.org/10.13031/2013.25391
  19. Logan BE. Environmental transport processes. Hoboken (NJ): John Wiley & Sons; 2012.
  20. Milligan TG, Hill PS. A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behaviour. J. Sea Res. 1998;39:227-241. https://doi.org/10.1016/S1385-1101(97)00062-2
  21. Gregory J. Fundamentals of flocculation. Crit. Rev. Environ. Control 1989;19:185-230. https://doi.org/10.1080/10643388909388365
  22. Popa I, Papastavrou G, Borkovec M. Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers. Phys. Chemsitry Chem. Phys. 2010;12:4863-4871. https://doi.org/10.1039/b925812d
  23. Gregory J. The role of colloid interactions in solid-liquid separation. Water Sci. Technol. 1993;27:1-17. https://doi.org/10.1021/es00038a700
  24. Bratby J. Coagulation and flocculation in water and wastewater treatment. London: IWA Publishing; 2006.
  25. Bache DH, Gregory R. Flocs in water treatment. London: IWA Publishing; 2007.
  26. Benjamin MM, Lawler DF. Water quality engineering: Physical/chemical treatment processes. Hoboken (NJ): John Wiley & Sons; 2013.
  27. Partheniades E. Cohesive sediments in open channels: Properties, transport and applications. Oxford: Butterworth- Heinemann; 2009.
  28. Gregory J. Particles in water: Properties and processes. Boca Raton (FL): CRC Press; 2006.
  29. Shammas NK. Coagulation and flocculation. In: Wang LK, Hung Y-T, Shammas NK, eds. Physicochemical Treatment Processes. Totowa (NJ): Humana Press; 2005. p. 103-139.
  30. Marshall JS, Li S. Adhesive particle flow: A discrete-element approach. New York (NY): Cambridge University Press; 2014.
  31. Lebovka NI. Aggregation of charged colloidal particles. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state I. Heidelberg: Springer; 2013. p. 57-96.
  32. Nopens I. Modelling the activated sludge flocculation process: A population balance approach [dissertation]. Ghent: Univ. of Ghent; 2005.
  33. Moody G, Norman P. Chemical pre-treatment. In: Tarleton S, Wakeman R, eds. Solid-Liquid Separation: Scale-up of industrial equipment. Oxford: Elsevier; 2005. p. 38-81.
  34. Laskowski JS, Pugh RJ. Dispersions stability and dispersing agents. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 115-170.
  35. Lu S, Ding Y, Guo J. Kinetics of fine particle aggregation in turbulence. Adv. Colloid. Interface Sci. 1998;78:197-235. https://doi.org/10.1016/S0001-8686(98)00062-1
  36. Wilkinson KJ, Reinhardt A. Contrasting roles of natural organic matter on colloidal stabilization and flocculation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG, eds. Flocculation in Natural and Engineered Environmental Systems. Boca Raton (FL): CRC Press; 2005. p. 143-170.
  37. Bagster DF. Aggregate behaviour in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 26-58.
  38. Smith-Palmer T, Pelton R. Flocculation of particles. In: Somasundaran P, ed. Encyclopedia of Surface and Colloidal Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2584-2599.
  39. Schramm LL. Emulsions, foams, and suspensions. Weinheim: Wiley VCH; 2005.
  40. Gregory J. Stability and flocculation of suspensions. In: Shamlou AP, ed. Process. Solid-Liquid Suspensions. Oxford: Butterworth-Heinemann; 1993. p. 59-92.
  41. Grasso D, Subramaniam K, Butkus M, et al. A review of non-dlvo interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 2002;1:17-38. https://doi.org/10.1023/A:1015146710500
  42. Gregory J. Flocculation of fine particles. In: Mavros P, Matis KA, eds. Innovations in floatation technology. Dordrecht: Springer; 1992. p. 101-124.
  43. Hanson AT, Cleasby JL. The effects of temperature on turbulent flocculation: Fluid dynamics and chemistry. J. Am. Water Works Assoc. 1990;82:56-73. https://doi.org/10.1002/j.1551-8833.1990.tb07053.x
  44. Kissa E. Dispersions: Characterization, testing, and measurement. New York (NY): Marcel Dekker; 1999.
  45. Gregory J. Flocculation fundamentals. In: Tadros T, ed. Encyclopedia of colloid and interface science. Heidelberg: Springer; 2013. p. 459-491.
  46. Van Leussen W. Aggregation of particles, settling velocity of mud flocs-a review. In: Dronkers J, Van Leussen W, eds. Physical processes in estuaries. Heidelberg: Springer; 2011. p. 347-403.
  47. Thomas DN, Judd SJ, Fawcett N. Flocculation modelling: A review. Water Res. 1999;33:1579-1592. https://doi.org/10.1016/S0043-1354(98)00392-3
  48. Atkinson JF, Chakraborti RK, Benschoten JE. Effects of floc size and shape in particle aggregation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG (eds) Flocculation in natural and engineered environmental systems. Boca Raton (FL): CRC Press; 2005. p. 95-120.
  49. Kramer TA, Clark MM. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 1999;216:116-126. https://doi.org/10.1006/jcis.1999.6305
  50. Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. In: Hart BT, Sly PG, eds. Sediment/Water Interactions. Heidelberg: Springer; 1992. p. 1-16.
  51. Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. Hydrobiologia 1992;235-236:1-16. https://doi.org/10.1007/BF00026196
  52. Lawler FD. Physical aspects of flocculation: From microscale to macroscale. Water Res. 1993;27:165-180.
  53. Kruster KA. The influence of turbulence on aggregation of small particles in agitated vessels [dissertation]. Eindhoven: Technical Univ. Eindhoven; 1991.
  54. Lick W, Lick J. Aggregation and disaggregation of fine-grained lake sediments. J. Gt. Lakes Res. 1998;14:514-523.
  55. Tsai C-H, Iacobellis S, Lick W. Flocculation of fine-grained lake sediments due to a uniform shear stress. J. Gt. Lakes Res. 1987;13:135-146. https://doi.org/10.1016/S0380-1330(87)71637-2
  56. Wang L, Marchisio DL, Vigil RD, Fox RO. CFD simulation of aggregation and breakage processes in laminar taylor-couette flow. J. Colloid Interface Sci. 2005;282:380-396. https://doi.org/10.1016/j.jcis.2004.08.127
  57. Gregory J. Floc formation and floc structure. In: Newcombe G, Dixon D, eds. Interface science in drinking water treatment: Theory and applications. London: Academic Press; 2006. p. 25-43.
  58. Letterman RD, Amirtharajah A, O'Meila CR. Coagulation and flocculation. In: Edzwald J, ed. Water Quality & Treatment: A Handbook on Drinking Water. New York (NY): McGraw- Hill; 2010. p. 6.1-6.66.
  59. Bridgeman J, Jefferson B, Parsons SA. The development and application of CFD models for water treatment flocculators. Adv. Eng. Softw. 2010;41:99-109. https://doi.org/10.1016/j.advengsoft.2008.12.007
  60. Bridgeman J, Jefferson B, Parsons S. Assessing floc strength using CFD to improve organics removal. Chem. Eng. Res. Des. 2008;86:941-950. https://doi.org/10.1016/j.cherd.2008.02.007
  61. Camp TR, Stein PC. Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng. 1943;30:219-237.
  62. Winterwerp JC. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul Res. 1998;36:309-326. https://doi.org/10.1080/00221689809498621
  63. Zhu Z. Theory on orthokinetic flocculation of cohesive sediment: A review. J. Geosci. Environ. Prot. 2014;2:13-23.
  64. Bridgeman J, Jefferson B, Parsons SA. Computational fluid dynamics modelling of flocculation in water treatment: A review. Eng Appl. Comput. Fluid Mech. 2009;3:220-241.
  65. Korpijärvi J, Laine E, Ahlstedt H. Using CFD in the study of mixing in coagulation and flocculation. In: Hahn HH, Hoffmann E, Odegaard H (eds) Chemical Water Wastewater Treatment VI. Heidelberg: Springer; 2000. p. 89-99.
  66. Kramer TA, Clark MM. Influence of strain-rate on coagulation kinetics. J. Environ. Eng. 1997;123:444-452. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(444)
  67. Muhle K. Floc stability in laminar and turbulent flow. In: Dobias B, ed. Coagulation and Flocculation: Theory and Applications. New York (NY): Marcel Dekker; p. 355-390.
  68. Svarovsky L. Solid-liquid separation. 4th ed. Woburn, MA: Butterworth-Heinemann; 2000.
  69. Ives KJ. Experiments in orthokinetic flocculation. In: Gregory J, ed. Solid-Liquid Separation. London: Ellis Horwood Ltd; 1984. p. 196-220.
  70. Belfort G (1986) Fluid mechanics and cross-flow membrane filtration. In: Muralidhara HS, ed. Advances in Solid-Liquid Separation. Columbus (OH): Battelle Press; 1986. p. 165-189.
  71. Spicer PT. Shear-induced aggregation-fragmentation: Mixing and aggregate morphology effects [dissertation]. Cincinnati: Univ. of Cincinnati; 1997.
  72. Falk L, Commenge J. Characterization of mixing and segregation in homogeneous flow systems. In: Hessel V, Renken A, Schouten JC, Yoshida J, eds. Handbook of Micro Reactors. Weinheim: John Wiley & Sons; 2009. p. 147-171.
  73. Concha F. Solid-liquid separation in the mining industry. Heidelberg: Springer; 2014.
  74. Farrow JB, Swift JD. A new procedure for assessing the performance of flocculants. Int. J. Miner Process 1996;46:263-275. https://doi.org/10.1016/0301-7516(95)00084-4
  75. Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner Eng. 2015;70:20-25. https://doi.org/10.1016/j.mineng.2014.08.019
  76. Hendricks DW. Fundamentals of water treatment unit processes: Physical, chemical, and biological. Boca Raton (FL): CRC Press; 2011.
  77. Shamlou AP, Hooker-Titchener N. Turbulent aggregation and breakup of particles in liquids in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 1-25.
  78. Hogg R. Flocculation and dewatering. Int. J. Miner Process 2000;58:223-236. https://doi.org/10.1016/S0301-7516(99)00023-X
  79. Bergenstahl B. Emulsions. In: Beckett ST, ed. Physico-chemical aspects of food processing. glasgow: Blackie Academic & Professional; 1995. p. 49-64.
  80. Son M, Hsu T. Flocculation model of cohesive sediment using variable fractal dimension. Environ. Fluid Mech. 2008;8:55-71. https://doi.org/10.1007/s10652-007-9050-7
  81. Adachi Y, Kobayashi A, Kobayashi M. Structure of colloidal flocs in relation to the dynamic properties of unstable suspension. Int. J. Polym Sci. 2012;1-14.
  82. Tambo N. Optimization of flocculation in connection with various solid-liquid separation processes. In: Hahn H, Klute R, eds. Chemical water wastewater treatment. Heidelberg: Springer; 1990. p. 17-32.
  83. Yusa M, Suzuki H, Tanaka S. Separating liquids from solids by pellet flocculation. J. Am. Water Works Assoc. 1975;67:397-402.
  84. Yusa M, Igarashi C. Compaction of flocculated material. Water Res. 1984;18:811-816. https://doi.org/10.1016/0043-1354(84)90264-1
  85. Higashitani K, Shibata T, Matsuno Y. Formation of pellet flocs from kaolin suspension and their properties. J. Chem. Eng. Jpn. 1987;20:152-157. https://doi.org/10.1252/jcej.20.152
  86. Yusa M, Gaudin AM. Formation of pellet-like flocs of kaolinite by polymer chains. Am. Ceram Soc. Bull. 1964;43:402-406.
  87. Yusa M. Mechanisms of pelleting flocculation. Int. J. Miner Process 1977;4:293-305. https://doi.org/10.1016/0301-7516(77)90010-2
  88. Wang X, Jin P, Yuan H, et al. Pilot study of a fluidized- pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant. Water Sci. Technol. 2004;49:81-88.
  89. Gang Z, Ting-lin H, Chi T, et al. Settling behaviour of pellet flocs in pelleting flocculation process: Analysis through operational conditions. Water Sci. Technol. 2010;62:1346-1352. https://doi.org/10.2166/wst.2010.429
  90. Bahr S. Experimental studies of fundamental processes of pelleting flocculation [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2006.
  91. Walaszek W. Investigation upon structure of pellet flocs against process performance as a tool to optimize sludge conditioning [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2007.
  92. Panswad T, Polwanich S. Pilot plant application of pelletisation process on low-turbidity river water. J. Water Supply Res. Technol-AQUA 1998;47:236-244.
  93. Glasgow L. Physicochemical influences upon floc deformability, density, and permeability. In: 7th world congress of chemical engineering; 2005 Jul 10-14; Glasgow, Scotland.
  94. Gillberg L, Hanse B, Karlsson I, et al. About water treatment., Helsingborg: Kemira Kemwater; 2003.
  95. Yusa M. Pelleting flocculation in sludge conditioning - An overview. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems. Amsterdam: Elsevier; 1987. p. 755-763.
  96. Hemme A, Polte R, Ay P. Pelleting flocculation: The alternative to traditional sludge conditioning. Aufbereit-Tech 1995;36:226-235.
  97. Amirtharajah A, Tambo N. Mixing in water treatment. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 3-34.
  98. Higashitani K, Kubota T. Pelleting flocculation of colloidal latex particles. Powder Technol. 1987;51:61-69. https://doi.org/10.1016/0032-5910(87)80040-2
  99. Vigdergauz VE, Gol'berg GY. Kinetics of mechanical floccule synaeresis. J. Min. Sci. 2012;48:347-353. https://doi.org/10.1134/S1062739148020165
  100. Walaszek W, Ay P. Extended interpretation of the structural attributes of pellet flocs in pelleting flocculation. Miner Eng. 2006;19:1397-1400. https://doi.org/10.1016/j.mineng.2006.03.004
  101. Walaszek W, Ay P. Porosity and interior structure analysis of pellet-flocs. Colloids Surf. Physicochem Eng. Asp. 2006;280:155-162. https://doi.org/10.1016/j.colsurfa.2006.01.049
  102. Walaszek W, Ay P. Pelleting flocculation: An alternative technique to optimise sludge conditioning. Int. J. Miner Process 2005;76:173-180.
  103. Tambo N, Wang CC. The mechanism of pellet flocculation in fluidized-bed operations. J. Water Supply Res. Technol- AQUA 1993;42:67-76.
  104. Hjorth M. Flocculation and solid-liquid separation of animal slurry: Fundamentals, control and application [dissertation]. Odense: Univ. of Southern Denmark; 2009.
  105. Wang XH, Jiang C. Papermaking part II: Surface and colloid chemsitry of papermaking process. In: Somasundaran P, ed. Encyclopedia of Surface and Colloid Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 4435-4451.
  106. Xiao H. Fine clay flocculation. In: Somasundaran P, ed. Encyclopedia of surface and colloid science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2572-2583.
  107. Petzold G, Schwarz S. Polyelectrolyte complexes in flocculation applications. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state II. Heidelberg: Springer; 2013. p. 25-65.
  108. Moudgil BM. Selection of flocculants for solid-liquid separation process. In: Muralidhara HS, ed. Advances in solid-liquid separation. Columbus (OH): Battelle Press; 1986. p. 191-204.
  109. Böhm N, Kulicke W-M. Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins. Colloid Polym. Sci. 1997;275:73-81. https://doi.org/10.1007/s003960050054
  110. Besra L, Sengupta DK, Roy SK, Ay P. Polymer adsorption: Its correlation with flocculation and dewatering of kaolin suspension in the presence and absence of surfactants. Int. J. Miner Process 2002;66:183-202. https://doi.org/10.1016/S0301-7516(02)00064-9
  111. Hjorth M, Christensen ML, Christensen PV. Flocculation, coagulation, and precipitation of manure affecting three separation techniques. Bioresour Technol. 2008;99:8598-8604. https://doi.org/10.1016/j.biortech.2008.04.009
  112. Hjorth M, Jorgensen BU. Polymer flocculation mechanism in animal slurry established by charge neutralization. Water Res. 2012;46:1045-1051. https://doi.org/10.1016/j.watres.2011.11.078
  113. Lee CH, Liu JC. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res. 2000;34:4430-436. https://doi.org/10.1016/S0043-1354(00)00209-8
  114. Lagaly G. From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B, ed. Coagulation and flocculation: Theory and applications. New York (NY): Marcel Dekker; 1993. p. 427-494.
  115. Lagaly G. From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B, Stechemesser H, eds. Coagulation and flocculation: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 519-600.
  116. Coufort C, Bouyer D, Line A. Flocculation related to local hydrodynamics in a taylor-couette reactor and in a jar. Chem. Eng. Sci. 2005;60:2179-2192. https://doi.org/10.1016/j.ces.2004.10.038
  117. Boyle JF, Manas-Zloczower I, Feke DL. Hydrodynamic analysis of the mechanisms of agglomerate dispersion. Powder. Technol. 2005;153:127-133. https://doi.org/10.1016/j.powtec.2004.08.010
  118. Attia YA. Flocculation. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 277-308.
  119. Rulyov NN. Physicochemical microhydrodynamics of ultradisperse systems. In: Starov VM, ed. Nanoscience: Colloidal and Interfacial Aspects. Boca Raton (FL): CRC Press; 2010. p. 969-995.
  120. Zlokarnik M. Stirring: Theory and practice. Weinheim: Wiley-VCH; 2008.
  121. Baldyga J, Bourne JR. A fluid mechanical approach to turbulent mixing and chemical reaction part II micromixing in the light of turbulence theory. Chem. Eng. Commun. 1984;28:243-258. https://doi.org/10.1080/00986448408940136
  122. Thomas SF, Rooks P, Rudin F, et al. Swirl flow bioreactor containing dendritic copper-containing alginate beads: A potential rapid method for the eradication of escherichia coli from waste water streams. J. Water Process Eng. 2015;5:6-14. https://doi.org/10.1016/j.jwpe.2014.10.010
  123. Kresta SM, Brodkey RS. Turbulence in mixing applications. In: Paul EL, Atiemo-Obeng VA, Kresta SM, eds. Handbook of Industrial Mixing: Science and Practice. Hoboken (NJ): John Wiley & Sons; 2004. p. 19-87.
  124. Thoenes D. Chemical reactor development: From laboratory synthesis to industrial production. Dordrecht: Springer; 1998.
  125. Sparks T. Fluid mixing in rotor/stator mixers [dissertation]. Cranfield: Cranfield Univ.; 1996.
  126. Baldyga J, Pohorecki R. Turbulent micromixing in chemical reactors: A review. Chem. Eng. J. Biochem. Eng. 1995;58:183-195. https://doi.org/10.1016/0923-0467(95)02982-6
  127. Oldshue JY, Trussell RR. Design of impellers for mixing. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in coagulation and flocculation. Denver (CO): American water works association; 1991. p. 309-342.
  128. Kockmann N. Transport phenomena in micro process engineering. Heidelberg: Springer; 2008.
  129. Maggi F. Flocculation dynamics of cohesive sediment [dissertation]. Delft: Delft Univ. of Technology; 2005.
  130. Baldyga J, Bourne JR. Turbulent mixing and chemical reactions. Weinheim: Wiley-VCH; 1999.
  131. Wu H, Patterson GK. Laser-doppler measurements of turbulent- flow parameters in a stirred mixer. Chem. Eng. Sci. 1989;44:2207-2221. https://doi.org/10.1016/0009-2509(89)85155-3
  132. Kobayashi M, Adachi Y, Ooi S. Breakup of fractal flocs in a turbulent flow. Langmuir 1999;15:4351-4356. https://doi.org/10.1021/la980763o
  133. Bouyer D, Line A, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J. 2004;50:2064-2081. https://doi.org/10.1002/aic.10242
  134. Bouyer D, Coufort C, Line A, Do-Quang Z. Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. J. Colloid Interface Sci. 2005;292:413-428. https://doi.org/10.1016/j.jcis.2005.06.011
  135. He J, Liu J, Yuan Y, Zhang J. A novel quantitative method for evaluating floc strength under turbulent flow conditions. Desalination Water Treat. 2014;56:1975-1984.
  136. Argyropoulos CD, Markatos NC. Recent advances on the numerical modelling of turbulent flows. Appl. Math Model 2015;39:693-732. https://doi.org/10.1016/j.apm.2014.07.001
  137. Bubakova P, Pivokonsky M, Filip P. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol. 2013;235:540-549. https://doi.org/10.1016/j.powtec.2012.11.014
  138. Bemmer GG. Agglomeration in suspension: A study of mechanisms and kinetics [dissertation]. Delft: Delft Univ. of Technology; 1979.
  139. Spicer PT, Pratsinis SE. Shear-induced flocculation: The evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996;30:1049-1056. https://doi.org/10.1016/0043-1354(95)00253-7
  140. Soos M, Moussa AS, Ehrl L, et al. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J. Colloid Interface Sci. 2008;319:577-589. https://doi.org/10.1016/j.jcis.2007.12.005
  141. Carissimi E, Rubio J. The flocs generator reactor-fgr: A new basis for flocculation and solid-liquid separation. Int. J. Miner Process 2005;75:237-247. https://doi.org/10.1016/j.minpro.2004.08.021
  142. Carissimi E, Miller JD, Rubio J. Characterization of the high kinetic energy dissipation of the flocs generator reactor (FGR). Int. J. Miner Process 2007;85:41-49. https://doi.org/10.1016/j.minpro.2007.08.001
  143. Yuan Y, Farnood RR. Strength and breakage of activated sludge flocs. Powder Technol. 2010;199:111-119. https://doi.org/10.1016/j.powtec.2009.11.021
  144. Jarvis P, Jefferson B, Gregory J, Parsons SA. A review of floc strength and breakage. Water Res. 2005;39:3121-3137. https://doi.org/10.1016/j.watres.2005.05.022
  145. Tambo N, François RJ. Mixing, breakup and floc characteristics. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 256-281.
  146. Yeung AKC, Pelton R. Micromechanics: A new approach to studying the strength and breakup of flocs. J. Colloid Interface Sci. 1996;184:579-585. https://doi.org/10.1006/jcis.1996.0654
  147. Liu SX, Glasgow LA. Aggregate disintegration in turbulent jets. Water Air Soil Pollut. 1997;95:257-275. https://doi.org/10.1007/BF02406169
  148. Glasgow LA, Liu X. Response of aggregate structures to hydrodynamic stress. AIChE J. 1991;37:1411-1414. https://doi.org/10.1002/aic.690370913
  149. Wang G, Zhou S, Joshi JB, et al. An energy model on particle detachment in the turbulent field. Miner Eng. 2014;69:165-169. https://doi.org/10.1016/j.mineng.2014.07.018
  150. Bache DH. Floc rupture and turbulence: A framework for analysis. Chem. Eng. Sci. 2004;59:2521-2534. https://doi.org/10.1016/j.ces.2004.01.055
  151. Partheniades E. Turbulence, flocculation and cohesive sediment dynamics. In: Mehta AJ, ed. Nearshore and estuarine cohesive sediment transport. Washington DC: American Geophysical Union; 1993. p. 40-59.
  152. Hogg R. Flocculation and dewatering of fine-particle suspension. In: Dobias B, Stechemesser H, eds. Coagulation and flocculation: Second Edition (FL): CRC Press, Boca Raton; 2005. p. 805-850.
  153. Serra T, Casamitjana X. Modelling the aggregation and break-up of fractal aggregates in a shear flow. Appl. Sci. Res 1997;59:255-268. https://doi.org/10.1023/A:1001143707607
  154. McConnachie G. Turbulence intensity of mixing in relation to flocculation. J. Environ. Eng. 1991;117:731-750. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:6(731)
  155. Haralampides K, McCorquodale AJ, Krishnappan BG. Deposition properties of fine sediment. J. Hydraul Eng. 2003;129:230-234. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:3(230)
  156. Dobias B, Von Rybinski W. Stability of dispersions. In: Dobias B, Qiu X, Von Rybinski W, eds. Solid-liquid dispersions. New York (NY): Marcel Dekker; 1999. p 244-278.
  157. Peng SJ, Williams RA. Control and optimisation of mineral flocculation and transport processes using on-line particle size analysis. Miner Eng. 1993;6:133-153. https://doi.org/10.1016/0892-6875(93)90128-A
  158. Neumann LE, Howes T. Aggregation and breakage rates in the flocculation of estuarine cohesive sediments. In: Maa JPY, Sanford LP, Schoellhamer DH, eds. Estuarine and coastal fine sediment dynamics. Amsterdam: Elsevier; 2007. p. 35-53.
  159. Oshinowo L, Elsaadawy E, Vilagines R. CFD modeling of oil-water separation efficiency in three-phase separators. In: 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries; 2014 Jun 17-19; Trondheim, Norway. Oslo: SINTEF Academic Press; 2015. p. 207-216.
  160. Nopens I. Improved prediction of effluent suspended solids in clarifiers through integration of a population balance model. In: IWA Particle Separation Conference; 2007 Jul 9-12; Toulouse, France.
  161. Heath AR, Koh PTL. Combined population balance and CFD modelling of particle aggregation by polymeric flocculant. In: 3rd International Conference on CFD in the Minerals and Process Industries; 2003 Dec 10-12; Melbourne, Australia. p. 339-344.
  162. Torfs E. Different settling regimes in secondary settling tanks: Experimental process analysis, model development and calibration [dissertation]. Ghent: Ghent Univ.; 2015.
  163. Torfs E, Vesvikar M, Nopens I. Improved predictions of effl uent suspended solids in wastewater treatment plants by integration of a PBM with computational fluid dynamics. In: 5th population balance modelling conference; 2013 Sep 11-13; Bangalore, India.
  164. Lee BJ, Molz F. Numerical simulation of turbulence-induced flocculation and sedimentation in a flocculant-aided sediment retention pond. Env. Eng. Re.s 2014;19:165-174. https://doi.org/10.4491/eer.2014.19.2.165

Cited by

  1. Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm vol.21, pp.2, 2017, https://doi.org/10.1007/s10404-017-1856-0
  2. polymer flocculation and growth in Taylor–Couette flows vol.14, pp.42, 2018, https://doi.org/10.1039/C8SM01694A
  3. Computer Simulation Elucidates Yeast Flocculation and Sedimentation for Efficient Industrial Fermentation vol.13, pp.5, 2018, https://doi.org/10.1002/biot.201700697
  4. Fragmentation of magnetic particle aggregates in turbulence vol.3, pp.8, 2016, https://doi.org/10.1103/physrevfluids.3.084605
  5. Experimental and CFD Studies of the Hydrodynamics in Wet Agglomeration Process vol.2, pp.3, 2016, https://doi.org/10.3390/chemengineering2030032
  6. Prevalence and public health implications of mycotoxigenic fungi in treated drinking water systems vol.17, pp.4, 2016, https://doi.org/10.2166/wh.2019.122
  7. The Impact of Local Hydrodynamics on High-Rate Activated Sludge Flocculation in Laboratory and Full-Scale Reactors vol.8, pp.2, 2020, https://doi.org/10.3390/pr8020131
  8. Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment vol.8, pp.5, 2020, https://doi.org/10.3390/pr8050527
  9. 생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구 vol.36, pp.3, 2016, https://doi.org/10.15681/kswe.2020.36.3.185
  10. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment vol.13, pp.18, 2016, https://doi.org/10.3390/ma13183951
  11. Laboratory model for plastic fragmentation in the turbulent ocean vol.6, pp.2, 2016, https://doi.org/10.1103/physrevfluids.6.024601
  12. Ionic strength and polyelectrolyte molecular weight effects on floc formation and growth in Taylor-Couette flows vol.17, pp.5, 2016, https://doi.org/10.1039/d0sm01517b
  13. A Population Balance Model for Shear-Induced Polymer-Bridging Flocculation of Total Tailings vol.12, pp.1, 2016, https://doi.org/10.3390/min12010040
  14. Functionalized chitosan-magnetic flocculants for heavy metal and dye removal modeled by an artificial neural network vol.282, pp.no.pb, 2016, https://doi.org/10.1016/j.seppur.2021.120002