Browse > Article
http://dx.doi.org/10.4491/eer.2015.086

Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review  

Oyegbile, Benjamin (Brandenburgische Technische Universitat Cottbus-Senftenberg)
Ay, Peter (Department of Technical Environment and Climate Protection, Lubeck University of Applied Sciences)
Narra, Satyanarayana (Brandenburgische Technische Universitat Cottbus-Senftenberg)
Publication Information
Abstract
Flocculation is a widely used phase separation technique in industrial unit processes and is typically observed in many natural flow systems. Advances in colloidal chemistry over the past decades has vastly improved our understanding of this phenomenon. However, in many practical applications, process engineering still lags developments in colloidal science thereby creating a gap in knowledge. While significant progress has been made in environmental process engineering research over the past decades, there is still a need to align these two inter-dependent fields of research more closely. This paper provides a comprehensive review of the flocculation mechanism from empirical and theoretical perspective, discuss its practical applications, and examines the need and direction of future research.
Keywords
Floc stability; Hydrodynamics; Orthokinetic; Pelleting flocculation; Turbulence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang XH, Jiang C. Papermaking part II: Surface and colloid chemsitry of papermaking process. In: Somasundaran P, ed. Encyclopedia of Surface and Colloid Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 4435-4451.
2 Xiao H. Fine clay flocculation. In: Somasundaran P, ed. Encyclopedia of surface and colloid science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2572-2583.
3 Petzold G, Schwarz S. Polyelectrolyte complexes in flocculation applications. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state II. Heidelberg: Springer; 2013. p. 25-65.
4 Moudgil BM. Selection of flocculants for solid-liquid separation process. In: Muralidhara HS, ed. Advances in solid-liquid separation. Columbus (OH): Battelle Press; 1986. p. 191-204.
5 Böhm N, Kulicke W-M. Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins. Colloid Polym. Sci. 1997;275:73-81.   DOI
6 Besra L, Sengupta DK, Roy SK, Ay P. Polymer adsorption: Its correlation with flocculation and dewatering of kaolin suspension in the presence and absence of surfactants. Int. J. Miner Process 2002;66:183-202.   DOI
7 Hjorth M, Christensen ML, Christensen PV. Flocculation, coagulation, and precipitation of manure affecting three separation techniques. Bioresour Technol. 2008;99:8598-8604.   DOI
8 Hjorth M, Jorgensen BU. Polymer flocculation mechanism in animal slurry established by charge neutralization. Water Res. 2012;46:1045-1051.   DOI
9 Lee CH, Liu JC. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res. 2000;34:4430-436.   DOI
10 Lagaly G. From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B, ed. Coagulation and flocculation: Theory and applications. New York (NY): Marcel Dekker; 1993. p. 427-494.
11 Lagaly G. From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B, Stechemesser H, eds. Coagulation and flocculation: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 519-600.
12 Coufort C, Bouyer D, Line A. Flocculation related to local hydrodynamics in a taylor-couette reactor and in a jar. Chem. Eng. Sci. 2005;60:2179-2192.   DOI
13 Boyle JF, Manas-Zloczower I, Feke DL. Hydrodynamic analysis of the mechanisms of agglomerate dispersion. Powder. Technol. 2005;153:127-133.   DOI
14 Attia YA. Flocculation. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 277-308.
15 Rulyov NN. Physicochemical microhydrodynamics of ultradisperse systems. In: Starov VM, ed. Nanoscience: Colloidal and Interfacial Aspects. Boca Raton (FL): CRC Press; 2010. p. 969-995.
16 Zlokarnik M. Stirring: Theory and practice. Weinheim: Wiley-VCH; 2008.
17 Baldyga J, Bourne JR. A fluid mechanical approach to turbulent mixing and chemical reaction part II micromixing in the light of turbulence theory. Chem. Eng. Commun. 1984;28:243-258.   DOI
18 Thomas SF, Rooks P, Rudin F, et al. Swirl flow bioreactor containing dendritic copper-containing alginate beads: A potential rapid method for the eradication of escherichia coli from waste water streams. J. Water Process Eng. 2015;5:6-14.   DOI
19 Thoenes D. Chemical reactor development: From laboratory synthesis to industrial production. Dordrecht: Springer; 1998.
20 Kresta SM, Brodkey RS. Turbulence in mixing applications. In: Paul EL, Atiemo-Obeng VA, Kresta SM, eds. Handbook of Industrial Mixing: Science and Practice. Hoboken (NJ): John Wiley & Sons; 2004. p. 19-87.
21 Sparks T. Fluid mixing in rotor/stator mixers [dissertation]. Cranfield: Cranfield Univ.; 1996.
22 Baldyga J, Pohorecki R. Turbulent micromixing in chemical reactors: A review. Chem. Eng. J. Biochem. Eng. 1995;58:183-195.   DOI
23 Oldshue JY, Trussell RR. Design of impellers for mixing. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in coagulation and flocculation. Denver (CO): American water works association; 1991. p. 309-342.
24 Kockmann N. Transport phenomena in micro process engineering. Heidelberg: Springer; 2008.
25 Maggi F. Flocculation dynamics of cohesive sediment [dissertation]. Delft: Delft Univ. of Technology; 2005.
26 Baldyga J, Bourne JR. Turbulent mixing and chemical reactions. Weinheim: Wiley-VCH; 1999.
27 Wu H, Patterson GK. Laser-doppler measurements of turbulent- flow parameters in a stirred mixer. Chem. Eng. Sci. 1989;44:2207-2221.   DOI
28 Kobayashi M, Adachi Y, Ooi S. Breakup of fractal flocs in a turbulent flow. Langmuir 1999;15:4351-4356.   DOI
29 Bouyer D, Line A, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J. 2004;50:2064-2081.   DOI
30 Bouyer D, Coufort C, Line A, Do-Quang Z. Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. J. Colloid Interface Sci. 2005;292:413-428.   DOI
31 He J, Liu J, Yuan Y, Zhang J. A novel quantitative method for evaluating floc strength under turbulent flow conditions. Desalination Water Treat. 2014;56:1975-1984.
32 Argyropoulos CD, Markatos NC. Recent advances on the numerical modelling of turbulent flows. Appl. Math Model 2015;39:693-732.   DOI
33 Bubakova P, Pivokonsky M, Filip P. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol. 2013;235:540-549.   DOI
34 Bemmer GG. Agglomeration in suspension: A study of mechanisms and kinetics [dissertation]. Delft: Delft Univ. of Technology; 1979.
35 Spicer PT, Pratsinis SE. Shear-induced flocculation: The evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996;30:1049-1056.   DOI
36 Soos M, Moussa AS, Ehrl L, et al. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J. Colloid Interface Sci. 2008;319:577-589.   DOI
37 Carissimi E, Rubio J. The flocs generator reactor-fgr: A new basis for flocculation and solid-liquid separation. Int. J. Miner Process 2005;75:237-247.   DOI
38 Carissimi E, Miller JD, Rubio J. Characterization of the high kinetic energy dissipation of the flocs generator reactor (FGR). Int. J. Miner Process 2007;85:41-49.   DOI
39 Yuan Y, Farnood RR. Strength and breakage of activated sludge flocs. Powder Technol. 2010;199:111-119.   DOI
40 Jarvis P, Jefferson B, Gregory J, Parsons SA. A review of floc strength and breakage. Water Res. 2005;39:3121-3137.   DOI
41 Tambo N, François RJ. Mixing, breakup and floc characteristics. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 256-281.
42 Yeung AKC, Pelton R. Micromechanics: A new approach to studying the strength and breakup of flocs. J. Colloid Interface Sci. 1996;184:579-585.   DOI
43 Liu SX, Glasgow LA. Aggregate disintegration in turbulent jets. Water Air Soil Pollut. 1997;95:257-275.   DOI
44 Glasgow LA, Liu X. Response of aggregate structures to hydrodynamic stress. AIChE J. 1991;37:1411-1414.   DOI
45 Wang G, Zhou S, Joshi JB, et al. An energy model on particle detachment in the turbulent field. Miner Eng. 2014;69:165-169.   DOI
46 Bache DH. Floc rupture and turbulence: A framework for analysis. Chem. Eng. Sci. 2004;59:2521-2534.   DOI
47 Partheniades E. Turbulence, flocculation and cohesive sediment dynamics. In: Mehta AJ, ed. Nearshore and estuarine cohesive sediment transport. Washington DC: American Geophysical Union; 1993. p. 40-59.
48 Hogg R. Flocculation and dewatering of fine-particle suspension. In: Dobias B, Stechemesser H, eds. Coagulation and flocculation: Second Edition (FL): CRC Press, Boca Raton; 2005. p. 805-850.
49 Serra T, Casamitjana X. Modelling the aggregation and break-up of fractal aggregates in a shear flow. Appl. Sci. Res 1997;59:255-268.   DOI
50 McConnachie G. Turbulence intensity of mixing in relation to flocculation. J. Environ. Eng. 1991;117:731-750.   DOI
51 Neumann LE, Howes T. Aggregation and breakage rates in the flocculation of estuarine cohesive sediments. In: Maa JPY, Sanford LP, Schoellhamer DH, eds. Estuarine and coastal fine sediment dynamics. Amsterdam: Elsevier; 2007. p. 35-53.
52 Haralampides K, McCorquodale AJ, Krishnappan BG. Deposition properties of fine sediment. J. Hydraul Eng. 2003;129:230-234.   DOI
53 Dobias B, Von Rybinski W. Stability of dispersions. In: Dobias B, Qiu X, Von Rybinski W, eds. Solid-liquid dispersions. New York (NY): Marcel Dekker; 1999. p 244-278.
54 Peng SJ, Williams RA. Control and optimisation of mineral flocculation and transport processes using on-line particle size analysis. Miner Eng. 1993;6:133-153.   DOI
55 Oshinowo L, Elsaadawy E, Vilagines R. CFD modeling of oil-water separation efficiency in three-phase separators. In: 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries; 2014 Jun 17-19; Trondheim, Norway. Oslo: SINTEF Academic Press; 2015. p. 207-216.
56 Nopens I. Improved prediction of effluent suspended solids in clarifiers through integration of a population balance model. In: IWA Particle Separation Conference; 2007 Jul 9-12; Toulouse, France.
57 Heath AR, Koh PTL. Combined population balance and CFD modelling of particle aggregation by polymeric flocculant. In: 3rd International Conference on CFD in the Minerals and Process Industries; 2003 Dec 10-12; Melbourne, Australia. p. 339-344.
58 Torfs E. Different settling regimes in secondary settling tanks: Experimental process analysis, model development and calibration [dissertation]. Ghent: Ghent Univ.; 2015.
59 Farinato RS, Huang S-Y, Hawkins P. Polyelectrolyte-assisted dewatering. In: Farinato RS, Dubin PL, eds. Colloid-Polymer Interactions: From Fundamentals to Practice. New York (NY): John Wiley & Sons; 1993. p. 3-50.
60 Pietsch W. Agglomeration processes: Phenomena, technologies, equipment. Weinheim: Wiley-VCH; 2002.
61 Lick W. Sediment and contaminant transport in surface waters. Boca Raton (FL): CRC Press; 2008.
62 Addai-Mensah J, Prestidge CA. Structure formation in dispersed systems. In: Dobias B, Stechemesser H, eds. Coagulation and Flocculation Second: Second Edition. Boca Raton (FL): CRC Press; 2005. p. 135-216.
63 Lick W, Huang H, Jepsen R. Flocculation of fine-grained sediments due to differential settling. J. Geophys. Res. Oceans 1993;98:10279-10288.   DOI
64 Runkana V, Somasundaran P, Kapur PC. A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 2006;61:182-191.   DOI
65 Prat OO, Ducoste JJ. Simulation of flocculation in stirred vessels lagrangian versus eulerian. Chem. Eng. Res. Des. 2007;85:207-219.   DOI
66 Prat OP, Ducoste JJ. Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics. Chem. Eng. Sci. 2006;61:75-86.   DOI
67 Curran SJ, Black RA. Taylor-vortex bioreactors for enhanced mass transport. In: Chaudhuri J, Al-Rubeai M, eds. Bioreactors for tissue engineering: Principles, design and operation. dordrecht: Springer; 2005. p. 47-85.
68 Wu W. Computational river dynamics. London: CRC Press; 2008.
69 Torfs E, Vesvikar M, Nopens I. Improved predictions of effl uent suspended solids in wastewater treatment plants by integration of a PBM with computational fluid dynamics. In: 5th population balance modelling conference; 2013 Sep 11-13; Bangalore, India.
70 Lee BJ, Molz F. Numerical simulation of turbulence-induced flocculation and sedimentation in a flocculant-aided sediment retention pond. Env. Eng. Re.s 2014;19:165-174.   DOI
71 Sievers M, Stoll SM, Schroeder C, et al. Sludge dewatering and aggregate formation effects through taylor vortex assisted flocculation. Sep. Sci. Technol. 2008;43:1595-1609.   DOI
72 Tooby PF, Wick GL, Isaacs JD. The motion of a small sphere in a rotating velocity field: A possible mechanism for suspending particles in turbulence. J. Geophys. Res. 1977;82:2096-2100.   DOI
73 Taboada-Serrano P, Chin C-J, Yiacoumi S, Tsouris C. Modeling aggregation of colloidal particles. Curr. Opin. Colloid Interface Sci. 2005;10:123-132.   DOI
74 Biggs S. Aggregate structures and solid-liquid separation processes. KONA Powder Part J 2006;24:41-53.   DOI
75 Gregory J, Guibai L. Effects of dosing and mixing conditions on polymer flocculation of concentrated suspensions. Chem. Eng. Commun. 1991;108:3-21.   DOI
76 Yukselen MA, Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs. J. Chem. Technol. Biotechnol. 2004;79:782-788.   DOI
77 Lee KE, Morad N, Teng TT, Poh BT. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012;203:370-386.   DOI
78 Hjorth M, Christensen ML. Evaluation of methods to determine flocculation procedure for manure separation. Trans ASABE 2008;51:2093-2103.   DOI
79 Logan BE. Environmental transport processes. Hoboken (NJ): John Wiley & Sons; 2012.
80 Milligan TG, Hill PS. A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behaviour. J. Sea Res. 1998;39:227-241.   DOI
81 Gregory J. Fundamentals of flocculation. Crit. Rev. Environ. Control 1989;19:185-230.   DOI
82 Popa I, Papastavrou G, Borkovec M. Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers. Phys. Chemsitry Chem. Phys. 2010;12:4863-4871.   DOI
83 Gregory J. The role of colloid interactions in solid-liquid separation. Water Sci. Technol. 1993;27:1-17.   DOI
84 Bratby J. Coagulation and flocculation in water and wastewater treatment. London: IWA Publishing; 2006.
85 Bache DH, Gregory R. Flocs in water treatment. London: IWA Publishing; 2007.
86 Benjamin MM, Lawler DF. Water quality engineering: Physical/chemical treatment processes. Hoboken (NJ): John Wiley & Sons; 2013.
87 Partheniades E. Cohesive sediments in open channels: Properties, transport and applications. Oxford: Butterworth- Heinemann; 2009.
88 Gregory J. Particles in water: Properties and processes. Boca Raton (FL): CRC Press; 2006.
89 Shammas NK. Coagulation and flocculation. In: Wang LK, Hung Y-T, Shammas NK, eds. Physicochemical Treatment Processes. Totowa (NJ): Humana Press; 2005. p. 103-139.
90 Marshall JS, Li S. Adhesive particle flow: A discrete-element approach. New York (NY): Cambridge University Press; 2014.
91 Laskowski JS, Pugh RJ. Dispersions stability and dispersing agents. In: Laskowski JS, Ralston J, eds. Colloid chemistry in mineral processing. Amsterdam: Elsevier; 1992. p. 115-170.
92 Lebovka NI. Aggregation of charged colloidal particles. In: Muller M, ed. Polyelectrolyte complexes in the dispersed and solid state I. Heidelberg: Springer; 2013. p. 57-96.
93 Nopens I. Modelling the activated sludge flocculation process: A population balance approach [dissertation]. Ghent: Univ. of Ghent; 2005.
94 Moody G, Norman P. Chemical pre-treatment. In: Tarleton S, Wakeman R, eds. Solid-Liquid Separation: Scale-up of industrial equipment. Oxford: Elsevier; 2005. p. 38-81.
95 Lu S, Ding Y, Guo J. Kinetics of fine particle aggregation in turbulence. Adv. Colloid. Interface Sci. 1998;78:197-235.   DOI
96 Wilkinson KJ, Reinhardt A. Contrasting roles of natural organic matter on colloidal stabilization and flocculation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG, eds. Flocculation in Natural and Engineered Environmental Systems. Boca Raton (FL): CRC Press; 2005. p. 143-170.
97 Bagster DF. Aggregate behaviour in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 26-58.
98 Smith-Palmer T, Pelton R. Flocculation of particles. In: Somasundaran P, ed. Encyclopedia of Surface and Colloidal Science. 5th ed. Boca Raton (FL): CRC Press; 2006. p. 2584-2599.
99 Schramm LL. Emulsions, foams, and suspensions. Weinheim: Wiley VCH; 2005.
100 Gregory J. Stability and flocculation of suspensions. In: Shamlou AP, ed. Process. Solid-Liquid Suspensions. Oxford: Butterworth-Heinemann; 1993. p. 59-92.
101 Kissa E. Dispersions: Characterization, testing, and measurement. New York (NY): Marcel Dekker; 1999.
102 Grasso D, Subramaniam K, Butkus M, et al. A review of non-dlvo interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 2002;1:17-38.   DOI
103 Gregory J. Flocculation of fine particles. In: Mavros P, Matis KA, eds. Innovations in floatation technology. Dordrecht: Springer; 1992. p. 101-124.
104 Hanson AT, Cleasby JL. The effects of temperature on turbulent flocculation: Fluid dynamics and chemistry. J. Am. Water Works Assoc. 1990;82:56-73.   DOI
105 Gregory J. Flocculation fundamentals. In: Tadros T, ed. Encyclopedia of colloid and interface science. Heidelberg: Springer; 2013. p. 459-491.
106 Van Leussen W. Aggregation of particles, settling velocity of mud flocs-a review. In: Dronkers J, Van Leussen W, eds. Physical processes in estuaries. Heidelberg: Springer; 2011. p. 347-403.
107 Thomas DN, Judd SJ, Fawcett N. Flocculation modelling: A review. Water Res. 1999;33:1579-1592.   DOI
108 Atkinson JF, Chakraborti RK, Benschoten JE. Effects of floc size and shape in particle aggregation. In: Liss SN, Droppo IG, Leppard GG, Milligan TG (eds) Flocculation in natural and engineered environmental systems. Boca Raton (FL): CRC Press; 2005. p. 95-120.
109 Kramer TA, Clark MM. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 1999;216:116-126.   DOI
110 Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. In: Hart BT, Sly PG, eds. Sediment/Water Interactions. Heidelberg: Springer; 1992. p. 1-16.
111 Lick W, Lick J. Aggregation and disaggregation of fine-grained lake sediments. J. Gt. Lakes Res. 1998;14:514-523.
112 Lick W, Lick J, Ziegler CK. Flocculation and its effect of the vertical transport of fine-grained sediments. Hydrobiologia 1992;235-236:1-16.   DOI
113 Lawler FD. Physical aspects of flocculation: From microscale to macroscale. Water Res. 1993;27:165-180.
114 Kruster KA. The influence of turbulence on aggregation of small particles in agitated vessels [dissertation]. Eindhoven: Technical Univ. Eindhoven; 1991.
115 Tsai C-H, Iacobellis S, Lick W. Flocculation of fine-grained lake sediments due to a uniform shear stress. J. Gt. Lakes Res. 1987;13:135-146.   DOI
116 Wang L, Marchisio DL, Vigil RD, Fox RO. CFD simulation of aggregation and breakage processes in laminar taylor-couette flow. J. Colloid Interface Sci. 2005;282:380-396.   DOI
117 Gregory J. Floc formation and floc structure. In: Newcombe G, Dixon D, eds. Interface science in drinking water treatment: Theory and applications. London: Academic Press; 2006. p. 25-43.
118 Letterman RD, Amirtharajah A, O'Meila CR. Coagulation and flocculation. In: Edzwald J, ed. Water Quality & Treatment: A Handbook on Drinking Water. New York (NY): McGraw- Hill; 2010. p. 6.1-6.66.
119 Bridgeman J, Jefferson B, Parsons SA. The development and application of CFD models for water treatment flocculators. Adv. Eng. Softw. 2010;41:99-109.   DOI
120 Bridgeman J, Jefferson B, Parsons S. Assessing floc strength using CFD to improve organics removal. Chem. Eng. Res. Des. 2008;86:941-950.   DOI
121 Bridgeman J, Jefferson B, Parsons SA. Computational fluid dynamics modelling of flocculation in water treatment: A review. Eng Appl. Comput. Fluid Mech. 2009;3:220-241.
122 Camp TR, Stein PC. Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng. 1943;30:219-237.
123 Winterwerp JC. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul Res. 1998;36:309-326.   DOI
124 Zhu Z. Theory on orthokinetic flocculation of cohesive sediment: A review. J. Geosci. Environ. Prot. 2014;2:13-23.
125 Korpijärvi J, Laine E, Ahlstedt H. Using CFD in the study of mixing in coagulation and flocculation. In: Hahn HH, Hoffmann E, Odegaard H (eds) Chemical Water Wastewater Treatment VI. Heidelberg: Springer; 2000. p. 89-99.
126 Kramer TA, Clark MM. Influence of strain-rate on coagulation kinetics. J. Environ. Eng. 1997;123:444-452.   DOI
127 Muhle K. Floc stability in laminar and turbulent flow. In: Dobias B, ed. Coagulation and Flocculation: Theory and Applications. New York (NY): Marcel Dekker; p. 355-390.
128 Svarovsky L. Solid-liquid separation. 4th ed. Woburn, MA: Butterworth-Heinemann; 2000.
129 Ives KJ. Experiments in orthokinetic flocculation. In: Gregory J, ed. Solid-Liquid Separation. London: Ellis Horwood Ltd; 1984. p. 196-220.
130 Belfort G (1986) Fluid mechanics and cross-flow membrane filtration. In: Muralidhara HS, ed. Advances in Solid-Liquid Separation. Columbus (OH): Battelle Press; 1986. p. 165-189.
131 Spicer PT. Shear-induced aggregation-fragmentation: Mixing and aggregate morphology effects [dissertation]. Cincinnati: Univ. of Cincinnati; 1997.
132 Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner Eng. 2015;70:20-25.   DOI
133 Falk L, Commenge J. Characterization of mixing and segregation in homogeneous flow systems. In: Hessel V, Renken A, Schouten JC, Yoshida J, eds. Handbook of Micro Reactors. Weinheim: John Wiley & Sons; 2009. p. 147-171.
134 Concha F. Solid-liquid separation in the mining industry. Heidelberg: Springer; 2014.
135 Farrow JB, Swift JD. A new procedure for assessing the performance of flocculants. Int. J. Miner Process 1996;46:263-275.   DOI
136 Hendricks DW. Fundamentals of water treatment unit processes: Physical, chemical, and biological. Boca Raton (FL): CRC Press; 2011.
137 Shamlou AP, Hooker-Titchener N. Turbulent aggregation and breakup of particles in liquids in stirred vessels. In: Shamlou AP, ed. Processing of solid-liquid suspensions. Oxford: Butterworth-Heinemann; 1993. p. 1-25.
138 Hogg R. Flocculation and dewatering. Int. J. Miner Process 2000;58:223-236.   DOI
139 Bergenstahl B. Emulsions. In: Beckett ST, ed. Physico-chemical aspects of food processing. glasgow: Blackie Academic & Professional; 1995. p. 49-64.
140 Son M, Hsu T. Flocculation model of cohesive sediment using variable fractal dimension. Environ. Fluid Mech. 2008;8:55-71.   DOI
141 Adachi Y, Kobayashi A, Kobayashi M. Structure of colloidal flocs in relation to the dynamic properties of unstable suspension. Int. J. Polym Sci. 2012;1-14.
142 Tambo N. Optimization of flocculation in connection with various solid-liquid separation processes. In: Hahn H, Klute R, eds. Chemical water wastewater treatment. Heidelberg: Springer; 1990. p. 17-32.
143 Yusa M, Gaudin AM. Formation of pellet-like flocs of kaolinite by polymer chains. Am. Ceram Soc. Bull. 1964;43:402-406.
144 Yusa M, Suzuki H, Tanaka S. Separating liquids from solids by pellet flocculation. J. Am. Water Works Assoc. 1975;67:397-402.
145 Yusa M, Igarashi C. Compaction of flocculated material. Water Res. 1984;18:811-816.   DOI
146 Higashitani K, Shibata T, Matsuno Y. Formation of pellet flocs from kaolin suspension and their properties. J. Chem. Eng. Jpn. 1987;20:152-157.   DOI
147 Yusa M. Mechanisms of pelleting flocculation. Int. J. Miner Process 1977;4:293-305.   DOI
148 Wang X, Jin P, Yuan H, et al. Pilot study of a fluidized- pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant. Water Sci. Technol. 2004;49:81-88.
149 Gang Z, Ting-lin H, Chi T, et al. Settling behaviour of pellet flocs in pelleting flocculation process: Analysis through operational conditions. Water Sci. Technol. 2010;62:1346-1352.   DOI
150 Bahr S. Experimental studies of fundamental processes of pelleting flocculation [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2006.
151 Walaszek W. Investigation upon structure of pellet flocs against process performance as a tool to optimize sludge conditioning [dissertation]. Cottbus: Brandenburg Univ. of Technology; 2007.
152 Panswad T, Polwanich S. Pilot plant application of pelletisation process on low-turbidity river water. J. Water Supply Res. Technol-AQUA 1998;47:236-244.
153 Glasgow L. Physicochemical influences upon floc deformability, density, and permeability. In: 7th world congress of chemical engineering; 2005 Jul 10-14; Glasgow, Scotland.
154 Amirtharajah A, Tambo N. Mixing in water treatment. In: Amirtharajah A, Clark MM, Trussell R, eds. Mixing in Coagulation and Flocculation. Denver (CO): American Water Works Association; 1991. p. 3-34.
155 Gillberg L, Hanse B, Karlsson I, et al. About water treatment., Helsingborg: Kemira Kemwater; 2003.
156 Yusa M. Pelleting flocculation in sludge conditioning - An overview. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems. Amsterdam: Elsevier; 1987. p. 755-763.
157 Hemme A, Polte R, Ay P. Pelleting flocculation: The alternative to traditional sludge conditioning. Aufbereit-Tech 1995;36:226-235.
158 Higashitani K, Kubota T. Pelleting flocculation of colloidal latex particles. Powder Technol. 1987;51:61-69.   DOI
159 Vigdergauz VE, Gol'berg GY. Kinetics of mechanical floccule synaeresis. J. Min. Sci. 2012;48:347-353.   DOI
160 Walaszek W, Ay P. Extended interpretation of the structural attributes of pellet flocs in pelleting flocculation. Miner Eng. 2006;19:1397-1400.   DOI
161 Walaszek W, Ay P. Porosity and interior structure analysis of pellet-flocs. Colloids Surf. Physicochem Eng. Asp. 2006;280:155-162.   DOI
162 Walaszek W, Ay P. Pelleting flocculation: An alternative technique to optimise sludge conditioning. Int. J. Miner Process 2005;76:173-180.
163 Tambo N, Wang CC. The mechanism of pellet flocculation in fluidized-bed operations. J. Water Supply Res. Technol- AQUA 1993;42:67-76.
164 Hjorth M. Flocculation and solid-liquid separation of animal slurry: Fundamentals, control and application [dissertation]. Odense: Univ. of Southern Denmark; 2009.