• 제목/요약/키워드: Hydrodynamic Mass

검색결과 292건 처리시간 0.022초

부유기 OWC 챔버의 파중 운동해석 (A Study on the Floating OWC Chamber Motion in Waves)

  • 홍도천
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.

부유식 OWC 챔버의 파중 운동해석 (A Study on the Floating OWC Chamber Motion in Waves)

  • 홍도천;홍사영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.191-197
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating.air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be used for the analysis of air-cushion vehicle motion as well as for the design oj a floating owe wave energy absorber.

  • PDF

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

도시하천에서의 홍수범람도 작성을 위한 2차원 모형의 개발 (Two-Dimensional Model for the Prediction of Inundation Area in Urbanized Rivers)

  • 한건연;박재홍
    • 물과 미래
    • /
    • 제28권6호
    • /
    • pp.119-131
    • /
    • 1995
  • 본 연구는 제내지에서의 홍수범람도 작성을 위해서 2차원 천수방정식을 확산파 및 운동파로 단순화시킨 홍수해석 기법을 개발하였다. 모형의 검정을 위해서 1차원 댐 파괴의 문제에 적용하여 동역학적 해석결과와 비교검토하고 질량보존의 오차를 계산함으로써 모형의 검정을 실시하였다. 건물등의 장애물을 포함한 2차원 제내지 유역과 하도범람 홍수파의 홍수터에서의 2차원적 범람양상을 모의하여 확산파 모형의 적용성을 제시하였다. 본 연구 모형은 다양한 상황하에서 유속분포, 수면변동 등에 있어 안정성과 수렴성이 우수하게 나타났으며 해석영역에서의 질량보존의 오차는 0%에 가깝게 나타나 모형의 계산 수행 능력을 확인할 수 있었다. 본 연구의 해석기법은 하천에서의 홍수 예경보 수립과 홍수범람도 작성에 직접적으로 활용될 수 있을 것으로 판단된다.

  • PDF

Quantification of Oxygen Transfer in Test Tubes by Integrated Optical Sensing

  • Wittmann, Christoph;Schutz, Verena;John, Gernot;Heinzle, Elmar
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.991-995
    • /
    • 2004
  • Immobilized sensor spots were applied for online measurement of dissolved $O_2$, in test tubes. Oxygen transport was quantified at varied shaking frequency and filling volumes. The k$_{L}$ a increased with increasing shaking frequency and decreasing filling volume. In non-baffled tubes the maximum $k_{L}a$ value was $70h^{-1}$, equivalent to a maximum $O_2$ transfer capacity of 15mMh^{-1}$. Monitoring of the hydrodynamic profile revealed that the liquid bulk rotated inside the tube with an inclined liquid surface, whereby the angle between the surface and tube wall increased with increasing shaking frequency. The $k_{L}a$ clearly correlated to the surface area. Placement of four baffles into the tubes improved the oxygen transfer up to 3-fold. The highest increase in $k_{L}a$ was observed at high filling volume and high shaking frequency. The maximum $k_{L}a$ in baffled tubes was $100 h^{-1}$.

액체로켓 터보펌프의 임계 속도 해석 (Critical Speed Analysis of the Liquid Rocket Turbopump)

  • 전성민;곽현덕;윤석환;김진한
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.92-99
    • /
    • 2005
  • 30톤 추력급 터보펌프에 대한 회전체 동역학 해석이 수행되었다. 연료펌프와 터빈에 의해서 유발되는 공력 및 수력 하중이 볼 베어링과 비접촉식 실의 강성 및 감쇠 예측을 위하여 고려되었다. 임계 속도의 분리 안전 여유와 회전체 부품의 팁 변위를 예측하기 위하여 임계 속도 해석과 질량 불평형 응답 해석이 수행되었다. 정확한 해석을 위하여 3차원 유한요소법을 사용하였고 1차원 전달함수 행렬법의 결과와 비교하였다. 탄성 링을 추가적으로 장착함으로써 베어링 지지부의 강성 제어를 통하여 충분한 공진 분리 여유의 확보가 가능함을 확인하였다.

Formation of globular clusters in cosmological radiation hydrodynamic simulation

  • Yi, Sukyoung K.;Kimm, Taysun
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.36.1-36.1
    • /
    • 2016
  • This is a presentation of the paper published as Kimm et al. 2016, ApJ, 823, 52. We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with $Mhalo{\sim}4{\times}107Msun$ at z>10 using cosmological radiation-hydrodynamics simulations. We find that very compact (${\leq}1$ pc) and massive (${\sim}6{\times}105Msun$) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient $Ly{\alpha}$ emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short (${\ll}1Myr$), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. The simulated clusters closely resemble the local GCs in mass and size but show a metallicity spread that is much wider than found in the local GCs. We discuss a role of pre-enrichment by Pop III and II stars as a potential solution to the latter issue. Although not without shortcomings, it is encouraging that a naive blind (not tuned) cosmological simulation presents a possible channel for the formation of at least some massive GCs.

  • PDF

Star Formation and Feedback in Nuclear Rings of Barred Galaxies

  • 서우영;김웅태
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.39.1-39.1
    • /
    • 2012
  • Nuclear rings in barred galaxies are sites of active star formation (SF). We investigate SF and its feedback effects occurring in barred galaxies, for the first time, using high-resolution grid-based hydrodynamic simulations. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. The SF recipes include a density threshold corresponding to the Jeans condition, a SF efficiency of 1%, and momentum feedback via Type II supernova events together with stellar-wind mass loss. To investigate various environments, we vary the gas sound speed as well as the efficiency of momentum injection in the in-plane direction. We find that when the sound speed is small, the surface density of a ring becomes largely independent of the azimuthal angle, resulting in star-forming regions distributed over the whole length of the ring. When the sound speed is large, on the other hand, the ring achieves the largest density at the contact points between the dust lanes and the ring where SF occurs preferentially, leading to a clear age gradient of star clusters in the azimuthal direction. Since rings shrink with time, a radial age gradient of star clusters naturally develop regardless of sound speed, consistent with observations. SF persists over 200 Myr, with an average rate of ${\sim}1.3M_{\odot}/yr$ similar to observed values. Rings gradually become hostile to SF as they lose gas into stars and turbulent motions dominate.

  • PDF

3차원 교차 주름판 내 유동의 불안정성 및 자활 진동 (Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates)

  • 이승엽;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF