• Title/Summary/Keyword: Hydride

Search Result 689, Processing Time 0.035 seconds

The Operating Characteristics of the Compressor-Driven Metal Hydride Heat Pump System (Compressor-Driven Metal Hydride Heat Pump System의 동작특성에 관한 연구)

  • Park, Jeong-Gun;Seo, Chan-Yeol;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.157-167
    • /
    • 2001
  • Metal hydride올 이용하는 냉방시스템은 다른 냉방시스템과 비교하여 환경 친화적이며 Clean technology라는 장점이 있다. 이러한 시스템 중에 최근에 많은 연구가 진행중인 Electric Compressor로 수소의 이동이 제어되는 Compressor-Driven Metal Hydride Heat Pump(CDMHHP)은 폐열원의 온도에 의해 제어되는 시스템에 비하여 cooling power가 크다는 장점과 함께 단속적인 냉방이 아닌 2개의 함금쌍으로도 연속적인 냉방이 가능하다는 장점이 있다. 본 연구에서는 이러한 CDMHHP system의 동작특성을 분석하기 위해서 2개의 반응관에 고용량과 solping 특성이 매우 우수한 $Zr_{0.9}Ti_{0.1}Cr_{0.55}Fe_{1.45}$ Laves phase metal hydride을 장입하여 시스템을 구성하고 cycle time, surrounding temperature, 장입 수소량, 수소이동량등의 동작조건을 최적화 한 결과 최대 cooling power가 251 kcal/kg-alloyh의 우수한 성능을 보였다.

  • PDF

THE EFFECT OF HYDROGEN AND OXYGEN CONTENTS ON HYDRIDE REORIENTATIONS OF ZIRCONIUM ALLOY CLADDING TUBES

  • CHA, HYUN-JIN;JANG, KI-NAM;AN, JI-HYEONG;KIM, KYU-TAE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.746-755
    • /
    • 2015
  • To investigate the effect of hydrogen and oxygen contents on hydride reorientations during cool-down processes, zirconium-niobium cladding tube specimens were hydrogen-charged before some specimens were oxidized, resulting in 250 ppm and 500 ppm hydrogen-charged specimens containing no oxide and an oxide thickness of $0.38{\mu}m$ at each surface. The nonoxidized and oxidized hydrogen-charged specimens were heated up to $400^{\circ}C$ and then cooled down to room temperature at cooling rates of $0.3^{\circ}C/min$ and $8.0^{\circ}C/min$ under a tensile hoop stress of 150 MPa. The lower hydrogen contents and the slower cooling rate generated a larger fraction of radial hydrides, a longer radial hydride length, and a lower ultimate tensile strength and plastic elongation. In addition, the oxidized specimens generated a smaller fraction of radial hydrides and a lower ultimate tensile strength and plastic elongation than the nonoxidized specimens. This may be due to: a solubility difference between room temperature and $400^{\circ}C$; an oxygen-induced increase in hydrogen solubility and radial hydride nucleation energy; high temperature residence time during the cool-down; or undissolved circumferential hydrides at $400^{\circ}C$.

In-situ Observation of Hydride Stability of Vanadium Alloys in Electron Microscope

  • Ohnuki, S.;Takase, K.;Yashiki, K.;Hamada, K.;Suda, T.;Watanabe, S.
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.57-61
    • /
    • 2006
  • High-resolution microscopy was applied for surveying hydride stability in Vanadium alloys, which are candidate for hydrogen storage materials of advanced hydrogen energy systems. $V_2H$ hydride in V alloys was stable at room temperature under the vacuum condition, but it was decomposed during heating up to $100^{\circ}C$. It was confirmed from HRTEM image and FFT that $V_2H$ has a BCT structure, where hydrogen atoms locate at octahedral sites. Crystal orientation was <110> beta// <110> mat., and lattice strain is about 10%. After the decomposition of the hydride, relatively large lattice expansion was observed in the matrix, which suggests that hydrogen atoms should be trapped by lattice defects and included in the matrix. Intensive electron beam also enhanced the decomposition.

Thermal Analysis of Mg2Cu Hydride (Mg2 hydride의 열분석)

  • Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The desorption kinetics of $Mg_2Cu$ hydride were studied by thermal analysis technique in order to study desorption behavior and to relate thermal desorpton spectra to occuption site of hydrogen. It is suggested that a continuous ${\alpha}/{\beta}$ interface boundary is formed at the initial absorption stage. And the desorption kinetics were analysed by the theoretical equation which was derived on the basis of continous moving boundary model. The number of thermal desorption peak corresponds to the occupation sites of hydrogen. The apparent activation energy for the desorption of $Mg_2Cu$ hydride is 91 KJ/mol.

  • PDF

Operating Performance of Metal Hydride Heat Pump for Cooling (금속수소화물을 이용한 냉열발생형 열펌프의 성능)

  • Park, C.K.;Komazaki, Y.;Suda, S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.1
    • /
    • pp.21-30
    • /
    • 1993
  • The operational characteristics of a metal hydride heat pump system are strongly dependent on the amound of hydrogen gas transferred by hydriding and dehydriding reactions between the reactors under dynamic conditions. A new metal hydride heat pump combined with hydrogen compressor was constructed and the dependency of its operating conditions on such as cycle time, amount of hydrogen to be transferred between two reacting metal hydride reactors, operating temperature, and heat transmission characteristics of the reactors was investigated to find the optimum operating efficiency. These conditions were also evaluated in connection with the cooling output and hydrogen compressor connected to the system in order to enhance the total efficiency.

  • PDF

Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions

  • Kim, Ju-Seong;Kim, Tae-Hoon;Kim, Kyung-min;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1742-1748
    • /
    • 2020
  • TSSD, TSSP, and TSSP2 of hydrogen for optimized-Zirlo (Zirlo™) alloy were measured by DSC in the range of 53-457 wppm. Solvus curves of the TSSs are derived and proposed in this study. The results show that the temperature gap between TSSD and TSSP solvus lines of Zirlo™ are similar to those of other zirconium alloys, but another gap between the TSSD and TSSP2 line differs significantly. In particular, the TSSP2 solvus line becomes closer to the TSSD solvus line than to TSSP unlike Zircaloy-4, so ΔTTSSD-TSSP2 of Zirlo™ decreases with decreasing temperature. This implies that hydride reorientation can take place more significantly in Zirlo™ than in Zircaloy-4, and the limited temperature variation of 65 ℃ during the vacuum drying and the cooling-down process may not be sufficient to prevent the triggering of hydride reorientation in Zirlo™ cladding under long-term dry storage.

Hydride Embrittlement Behavior at the LBB Evaluation of PHWR Pressure Tube (중수로 압력관 LBB 평가에서의 수소화물에 의한 취화거동)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1192-1197
    • /
    • 2003
  • The aim of this study is to investigate the hydride embrittlement when the LBB evaluation is carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to $300^{\circ}C$). The specimens were directly machined from the pressure tube retaining original curvature. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over $250^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement behavior at the LBB evaluation was definitely showed.

  • PDF

Density Functional Theoretical Study on the Hydricities of Transition Metal Hydride Complexes in Water

  • Kang, Suk-Bok;Cho, Young-Seuk;Hwang, Sun-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2927-2929
    • /
    • 2009
  • The hydricities of d$^6$ metal hydride complexes in aqueous solution were calculated by using density functional theoretical (DFT) calculations coupled with a Poisson-Boltzmann (PB) solvent model. Hydricity describes the hydride donor ability of the metal-hydrogen bond, which assists in the study of the mechanism of many catalytic processes and chemical reactions that involve transition metal hydrides. The calculation scheme produced hydricity values that were in good agreement with experimental estimation. The inclusion of a water molecule as a weakly bound ligand to five-coordinate metal complexes gave an improved correlation result.

Effect of Hydride of the PHWR Pressure Tube on the LBB Evaluation (중수로 압력관의 수화물이 LBB평가에 미치는 영향)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.610-616
    • /
    • 2004
  • The aim of this study was to investigate the hydride embrittlement when the LBB evaluation was carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT toughness tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to 30$0^{\circ}C$). Both the transverse tensile and the fracture toughness tests showed the hydrogen embitterment clearly at RT but this phenomenon was disappeared while the test temperature arrived at 25$0^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement at the LBB evaluation made the LBB time short definedly. If the operating temperature, DHCV and LBB deterministic parameters such as A and m were known, LBB time could be estimated without the calculation of CCL.

Preparation of Hybrid Materials with Zeolite and Metal Hydride, and Their Hydrogen Absorbing Properties (금속수소화물과 제올라이트의 혼성화물제조 및 수소화반응)

  • Eun, Won-Pyo;Lee, Kong-Hee;Bae, Jang-Son;Park, Chan-Kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.146-154
    • /
    • 2003
  • The hybrids of zeolite and metal hydride were prepared to improve the absorption properties as media for hydrogen storage. The zeolites which was deposited on the surface by metal hydride vapor showed excellent absorption properties and sodalite was proved to be better than zeolite-A in the reaction velocity and hydrogen storage capacity. This suggests the metal hydride could be used effectively as catalytic active material for enhancing the hydrogen storage in zeolite containing $\alpha$-cages and furthermore the hydrogen molecules have preference tobe occluded in their cavities containing $\alpha$-cages more effectively than that containing a and $\beta$-cages.