References
- J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (3) (1967) 292-303. https://doi.org/10.1016/0022-3115(67)90047-5
- A. Sawatzky, The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2, J. Nucl. Mater. 2 (1) (1960) 62-68. https://doi.org/10.1016/0022-3115(60)90025-8
-
W.H. Erickson, D. Hardie, The influence of alloying elements on the terminal solubility of hydrogen in
${\alpha}$ -zirconium, J. Nucl. Mater. 13 (2) (1964) 254-262. https://doi.org/10.1016/0022-3115(64)90046-7 - H.C. Chu, S.K. Wu, R.C. Kuo, Hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater. 373 (1-3) (2008) 319-327. https://doi.org/10.1016/j.jnucmat.2007.06.012
- J.-S. Kim, Y.-J. Kim, D.-H. Kook, Y.-S. Kim, A study on hydride reorientation of Zircaloy-4 cladding tube under stress, J. Nucl. Mater. 456 (2015) 246-252, 0. https://doi.org/10.1016/j.jnucmat.2014.09.032
- J.-S. Kim, T.-H. Kim, D.-H. Kook, Y.-S. Kim, Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding, J. Nucl. Mater. 456 (2015) 235-245, 0. https://doi.org/10.1016/j.jnucmat.2014.09.025
- Y.-J. Kim, D.-H. Kook, T.-H. Kim, J.-S. Kim, Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation, J. Nucl. Sci. Technol. 52 (5) (2015) 717-727. https://doi.org/10.1080/00223131.2014.978829
- M.C. Billone, T.A. Burtseva, R.E. Einziger, Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater. 433 (1-3) (2013) 431-448. https://doi.org/10.1016/j.jnucmat.2012.10.002
- M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, T. Takeda, Evaluation of Hydride Reorientation Behavior and Mechanical Properties for High-Burnup Fuel-Cladding Tubes in Interim Dry Storage, vol. 1505, ASTM special technical publication, 2009, pp. 651-673.
- H.-J. Cha, K.-N. Jang, J.-H. An, K.-T. Kim, The effect of hydrogen and oxygen contents on hydride reorientations of zirconium alloy cladding tubes, Nucl. Eng. Technol 47 (6) (2015) 746-755. https://doi.org/10.1016/j.net.2015.06.004
- C. Coleman, V. Inozemtsev, V. markelov, R. Roth, A.-M. Alvare-Holston, L. Ramanathan, Z. He, J.K. Chakravartty, V. Makarevicius, L. Ali, The threshold stress-intensity factor, KIH, for delayed hydride cracking (DHC) in zircaloy-4 fuel cladding- an IAEA coordinated research project (CRP), in: Proceeding of Water Reactor Fuel Performance Meeting 2014 Sendai, Japan, 2014. Sept 14-17, 2014, Paper No. 100048.
- A.-M. Alvarez Holston, J. Stjarnsater, On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding, Nucl. Eng. Technol 49 (4) (2017) 663-667. https://doi.org/10.1016/j.net.2017.04.002
- Y.S. Kim, Delayed hydride cracking of spent fuel rods in dry storage, J. Nucl. Mater. 378 (1) (2008) 30-34. https://doi.org/10.1016/j.jnucmat.2008.04.011
- K.S. Chan, An assessment of delayed hydride cracking in zirconium alloy cladding tubes under stress transients, Int. Mater. Rev. 58 (6) (2013) 349-373. https://doi.org/10.1179/1743280412Y.0000000013
- J.-S. Kim, J.-D. Hong, Y.-S. Yang, D.-H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259. https://doi.org/10.1016/j.jnucmat.2017.05.047
- M.P. Puls, The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals, Acta Metall. 29 (12) (1981) 1961-1968. https://doi.org/10.1016/0001-6160(81)90033-X
- Z.L. Pan, I.G. Ritchie, M.P. Puls, The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys, J. Nucl. Mater. 228 (2) (1996) 227-237. https://doi.org/10.1016/S0022-3115(95)00217-0
- G.F. Slattery, The terminal solubility of hydrogen in the zirconium/2 at % chromium/0.16 at % iron alloy, J. Nucl. Mater. 32 (1) (1969) 30-38. https://doi.org/10.1016/0022-3115(69)90139-1
- A. McMinn, E.C. Darby, J.S. Schofield, Terminal Solid Solubility of Hydrogen in Zirconium Alloys, vol. 1354, ASTM special technical publication, 2000, pp. 173-195.
- Z.L. Pan, M.P. Puls, Precipitation and dissolution peaks of hydride in Zr-2.5Nb during quasistatic thermal cycles, J. Alloys Compd. 310 (1-2) (2000) 214-218. https://doi.org/10.1016/S0925-8388(00)01028-8
- Y. Kim, S. Choi, Y. Cheong, Review of the initiation and arrest temperatures for delayed hydride cracking in zirconium alloys, Met. Mater. Int. 11 (1) (2005) 39-47. https://doi.org/10.1007/BF03027482
- S.Q. Shi, G.K. Shek, M.P. Puls, Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 218 (2) (1995) 189-201. https://doi.org/10.1016/0022-3115(94)00405-6
- M.P. Puls, Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, J. Nucl. Mater. 393 (2) (2009) 350-367. https://doi.org/10.1016/j.jnucmat.2009.06.022
- M.P. Puls, Comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys", M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367, J. Nucl. Mater. 399 (2-3) (2010) 248-258. https://doi.org/10.1016/j.jnucmat.2010.01.026
- Y.S. Kim, Author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367", J. Nucl. Mater. 399 (2-3) (2010) 240-247. https://doi.org/10.1016/j.jnucmat.2009.12.001
- Y.S. Kim, Author's 2nd reply to comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys," M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367, J. Nucl. Mater. 399 (2-3) (2010) 259-265. https://doi.org/10.1016/j.jnucmat.2010.02.015
- Y.S. Kim, Comments on the DuttonePuls model: temperature and yield stress dependences of crack growth rate in zirconium alloys, Mater. Sci. Eng., A 527 (29-30) (2010) 7480-7483. https://doi.org/10.1016/j.msea.2010.07.100
- G.A. McRae, C.E. Coleman, B.W. Leitch, The first step for delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 396 (1) (2010) 130-143. https://doi.org/10.1016/j.jnucmat.2009.08.019
- J.-S. Kim, Y.-S. Kim, Effect of thermal history on the terminal solid solubility of hydrogen in Zircaloy-4, Int. J. Hydrogen Energy 39 (29) (2014) 16442-16449. https://doi.org/10.1016/j.ijhydene.2014.08.018
- D. Khatamian, Z.L. Pan, M.P. Puls, C.D. Cann, Hydrogen solubility limits in Excel, an experimental zirconium-based alloy, J. Alloys Compd. 231 (1-2) (1995) 488-493. https://doi.org/10.1016/0925-8388(95)01867-0
- K. Une, S. Ishimoto, Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy, J. Nucl. Mater. 322 (1) (2003) 66-72. https://doi.org/10.1016/S0022-3115(03)00320-9
- K. Une, S. Ishimoto, Terminal solid solubility of hydrogen in unalloyed zirconium by differential scanning calorimetry, J. Nucl. Sci. Technol. 41 (9) (2004) 949-952. https://doi.org/10.3327/jnst.41.949
- J.P. Giroldi, P. Vizcaino, A.V. Flores, A.D. Banchik, Hydrogen terminal solid solubility determinations in Zr-2.5Nb pressure tube microstructure in an extended concentration range, J. Alloys Compd. 474 (1-2) (2009) 140-146. https://doi.org/10.1016/j.jallcom.2008.06.104
- I.G. Ritchie, Z.L. Pan, Internal friction and young's modulus measurements in Zr-2.5Nb alloy doped with hydrogen, ASTM Spec. Tech. Publ. 1169 (1992) 385-395.
- O. Zanellato, M. Preuss, J.Y. Buffiere, F. Ribeiro, A. Steuwer, J. Desquines, J. Andrieux, B. Krebs, Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4, J. Nucl. Mater. 420 (1-3) (2012) 537-547. https://doi.org/10.1016/j.jnucmat.2011.11.009
- K.B. Colas, A.T. Motta, M.R. Daymond, J.D. Almer, Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction, J. Nucl. Mater. 440 (1-3) (2013) 586-595. https://doi.org/10.1016/j.jnucmat.2013.04.047
- O.F. Courty, A.T. Motta, C.J. Piotrowski, J.D. Almer, Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction, J. Nucl. Mater. 461 (2015) 180-185, 0. https://doi.org/10.1016/j.jnucmat.2015.02.035
- R. Tang, X. Yang, Dissolution and precipitation behaviors of hydrides in N18, Zry-4 and M5 alloys, Int. J. Hydrogen Energy 34 (17) (2009) 7269-7274. https://doi.org/10.1016/j.ijhydene.2009.07.018
- J.G. Bang, J.H. Baek, Y.H. Jeong, P07G24 determination of terminal solid solubility of hydrogen in zirconium alloys, Korean Nuclear Society 2004 (2004) 1028-1032.
- D. Khatamian, DSC "peak temperature" versus "maximum slope temperature" in determining TSSD temperature, J. Nucl. Mater. 405 (2) (2010) 171-176. https://doi.org/10.1016/j.jnucmat.2010.08.010
-
D. Khatamian, Effect of
${\beta}$ -Zr decomposition on the solubility limits for H in Zr-2.5Nb, J. Alloys Compd. 356-357 (2003) 22-26. https://doi.org/10.1016/S0925-8388(03)00094-X -
S.A. Parodi, L.M.E. Ponzoni, M.E. De Las Heras, J.I. Mieza, G. Domizzi, Study of variables that affect hydrogen solubility in
${\alpha}+{\beta}$ Zr-alloys, J. Nucl. Mater. 477 (2016) 305-317. https://doi.org/10.1016/j.jnucmat.2016.05.027 - D.J. Cameron, R.G. Duncan, On the existence of a memoty effect in hydride precipitation in cold-worked Zr-2.5% Nb, J. Nucl. Mater. 68 (3) (1977) 340-344. https://doi.org/10.1016/0022-3115(77)90260-4
- G.J.C. Carpenter, The dilatational misfit of zirconium hydrides precipitated in zirconium, J. Nucl. Mater. 48 (3) (1973) 264-266. https://doi.org/10.1016/0022-3115(73)90022-6
- G.J.C. Carpenter, J.F. Watters, R.W. Gilbert, Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys, J. Nucl. Mater. 48 (3) (1973) 267-276. https://doi.org/10.1016/0022-3115(73)90023-8
-
G.J.C. Carpenter, J.F. Watters, An in-situ study of the dissolution of
${\gamma}$ -zirconium hydride in zirconium, J. Nucl. Mater. 73 (2) (1978) 190-197. https://doi.org/10.1016/0022-3115(78)90559-7 - J.-S. Kim, S.-D. Kim, J. Yoon, Hydride formation on deformation twin in zirconium alloy, J. Nucl. Mater. 482 (2016) 88-92. https://doi.org/10.1016/j.jnucmat.2016.10.020
-
G.F. Slattery, The terminal solubility of hydrogen in zirconium alloys between 30 and
$400^{\circ}C$ , J. Inst. Met. 95 (1967) 43-47. - M. Ito, K. Ko, H. Muta, M. Uno, S. Yamanaka, Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4, J. Alloys Compd. 446-447 (2007) 451-454. https://doi.org/10.1016/j.jallcom.2007.01.084
- M.C. Billone, T.A. Burtseva, Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding, Argonne National Lab. (ANL), Argonne, IL (United States), 2016, pp. 1-94.
- U.S. Nuclear Regulatory Commission (NRC), Interim Staff Guidance-11, 2003. Revision 3.
- B.G. Kammenzind, D.G. Franklin, H.R. Peters, W.J. Duffin, Hydrogen Pickup and Redistribution in Alpha-Annealed Zircaloy-4, vol. 1295, ASTM special technical publication, 1996, pp. 338-369.
- H.E. Weekes, N.G. Jones, T.C. Lindley, D. Dye, Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction, J. Nucl. Mater. 478 (2016) 32-41. https://doi.org/10.1016/j.jnucmat.2016.05.029
- P. Vizcaino, J.R. Santisteban, M.A. Vicente Alvarez, A.D. Banchik, J. Almer, Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2.5%Nb, J. Nucl. Mater. 447 (1-3) (2014) 82-93. https://doi.org/10.1016/j.jnucmat.2013.12.025
Cited by
- Hydride embrittlement resistance of Zircaloy-4 and Zr-Nb alloy cladding tubes and its implications on spent fuel management vol.559, 2020, https://doi.org/10.1016/j.jnucmat.2021.153393
- Accurate prediction of threshold stress for hydride reorientation in Zircaloy-4 with directly measured interface orientation relationship vol.21, 2020, https://doi.org/10.1016/j.mtla.2021.101291