Browse > Article
http://dx.doi.org/10.1016/j.net.2020.01.022

Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions  

Kim, Ju-Seong (Korea Atomic Energy Research Institute)
Kim, Tae-Hoon (Korea Institute of Nuclear Safety)
Kim, Kyung-min (Hanyang University)
Kim, Yong-Soo (Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.52, no.8, 2020 , pp. 1742-1748 More about this Journal
Abstract
TSSD, TSSP, and TSSP2 of hydrogen for optimized-Zirlo (Zirlo™) alloy were measured by DSC in the range of 53-457 wppm. Solvus curves of the TSSs are derived and proposed in this study. The results show that the temperature gap between TSSD and TSSP solvus lines of Zirlo™ are similar to those of other zirconium alloys, but another gap between the TSSD and TSSP2 line differs significantly. In particular, the TSSP2 solvus line becomes closer to the TSSD solvus line than to TSSP unlike Zircaloy-4, so ΔTTSSD-TSSP2 of Zirlo™ decreases with decreasing temperature. This implies that hydride reorientation can take place more significantly in Zirlo™ than in Zircaloy-4, and the limited temperature variation of 65 ℃ during the vacuum drying and the cooling-down process may not be sufficient to prevent the triggering of hydride reorientation in Zirlo™ cladding under long-term dry storage.
Keywords
TSSD of hydrogen; TSSP; And TSSP2; $Zirlo^{TM}$; Hydride reorientation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B.G. Kammenzind, D.G. Franklin, H.R. Peters, W.J. Duffin, Hydrogen Pickup and Redistribution in Alpha-Annealed Zircaloy-4, vol. 1295, ASTM special technical publication, 1996, pp. 338-369.
2 H.E. Weekes, N.G. Jones, T.C. Lindley, D. Dye, Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction, J. Nucl. Mater. 478 (2016) 32-41.   DOI
3 P. Vizcaino, J.R. Santisteban, M.A. Vicente Alvarez, A.D. Banchik, J. Almer, Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2.5%Nb, J. Nucl. Mater. 447 (1-3) (2014) 82-93.   DOI
4 M.P. Puls, Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, J. Nucl. Mater. 393 (2) (2009) 350-367.   DOI
5 M.P. Puls, Comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys", M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367, J. Nucl. Mater. 399 (2-3) (2010) 248-258.   DOI
6 Y.S. Kim, Author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367", J. Nucl. Mater. 399 (2-3) (2010) 240-247.   DOI
7 Y.S. Kim, Author's 2nd reply to comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys," M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367, J. Nucl. Mater. 399 (2-3) (2010) 259-265.   DOI
8 Y.S. Kim, Comments on the DuttonePuls model: temperature and yield stress dependences of crack growth rate in zirconium alloys, Mater. Sci. Eng., A 527 (29-30) (2010) 7480-7483.   DOI
9 G.A. McRae, C.E. Coleman, B.W. Leitch, The first step for delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 396 (1) (2010) 130-143.   DOI
10 J.-S. Kim, Y.-S. Kim, Effect of thermal history on the terminal solid solubility of hydrogen in Zircaloy-4, Int. J. Hydrogen Energy 39 (29) (2014) 16442-16449.   DOI
11 D. Khatamian, Z.L. Pan, M.P. Puls, C.D. Cann, Hydrogen solubility limits in Excel, an experimental zirconium-based alloy, J. Alloys Compd. 231 (1-2) (1995) 488-493.   DOI
12 M.C. Billone, T.A. Burtseva, R.E. Einziger, Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater. 433 (1-3) (2013) 431-448.   DOI
13 K. Une, S. Ishimoto, Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy, J. Nucl. Mater. 322 (1) (2003) 66-72.   DOI
14 J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (3) (1967) 292-303.   DOI
15 A. Sawatzky, The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2, J. Nucl. Mater. 2 (1) (1960) 62-68.   DOI
16 W.H. Erickson, D. Hardie, The influence of alloying elements on the terminal solubility of hydrogen in ${\alpha}$-zirconium, J. Nucl. Mater. 13 (2) (1964) 254-262.   DOI
17 H.C. Chu, S.K. Wu, R.C. Kuo, Hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater. 373 (1-3) (2008) 319-327.   DOI
18 J.-S. Kim, T.-H. Kim, D.-H. Kook, Y.-S. Kim, Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding, J. Nucl. Mater. 456 (2015) 235-245, 0.   DOI
19 Y.-J. Kim, D.-H. Kook, T.-H. Kim, J.-S. Kim, Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation, J. Nucl. Sci. Technol. 52 (5) (2015) 717-727.   DOI
20 M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, T. Takeda, Evaluation of Hydride Reorientation Behavior and Mechanical Properties for High-Burnup Fuel-Cladding Tubes in Interim Dry Storage, vol. 1505, ASTM special technical publication, 2009, pp. 651-673.
21 H.-J. Cha, K.-N. Jang, J.-H. An, K.-T. Kim, The effect of hydrogen and oxygen contents on hydride reorientations of zirconium alloy cladding tubes, Nucl. Eng. Technol 47 (6) (2015) 746-755.   DOI
22 C. Coleman, V. Inozemtsev, V. markelov, R. Roth, A.-M. Alvare-Holston, L. Ramanathan, Z. He, J.K. Chakravartty, V. Makarevicius, L. Ali, The threshold stress-intensity factor, KIH, for delayed hydride cracking (DHC) in zircaloy-4 fuel cladding- an IAEA coordinated research project (CRP), in: Proceeding of Water Reactor Fuel Performance Meeting 2014 Sendai, Japan, 2014. Sept 14-17, 2014, Paper No. 100048.
23 O. Zanellato, M. Preuss, J.Y. Buffiere, F. Ribeiro, A. Steuwer, J. Desquines, J. Andrieux, B. Krebs, Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4, J. Nucl. Mater. 420 (1-3) (2012) 537-547.   DOI
24 K. Une, S. Ishimoto, Terminal solid solubility of hydrogen in unalloyed zirconium by differential scanning calorimetry, J. Nucl. Sci. Technol. 41 (9) (2004) 949-952.   DOI
25 J.P. Giroldi, P. Vizcaino, A.V. Flores, A.D. Banchik, Hydrogen terminal solid solubility determinations in Zr-2.5Nb pressure tube microstructure in an extended concentration range, J. Alloys Compd. 474 (1-2) (2009) 140-146.   DOI
26 I.G. Ritchie, Z.L. Pan, Internal friction and young's modulus measurements in Zr-2.5Nb alloy doped with hydrogen, ASTM Spec. Tech. Publ. 1169 (1992) 385-395.
27 K.B. Colas, A.T. Motta, M.R. Daymond, J.D. Almer, Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction, J. Nucl. Mater. 440 (1-3) (2013) 586-595.   DOI
28 O.F. Courty, A.T. Motta, C.J. Piotrowski, J.D. Almer, Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction, J. Nucl. Mater. 461 (2015) 180-185, 0.   DOI
29 A.-M. Alvarez Holston, J. Stjarnsater, On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding, Nucl. Eng. Technol 49 (4) (2017) 663-667.   DOI
30 J.-S. Kim, Y.-J. Kim, D.-H. Kook, Y.-S. Kim, A study on hydride reorientation of Zircaloy-4 cladding tube under stress, J. Nucl. Mater. 456 (2015) 246-252, 0.   DOI
31 R. Tang, X. Yang, Dissolution and precipitation behaviors of hydrides in N18, Zry-4 and M5 alloys, Int. J. Hydrogen Energy 34 (17) (2009) 7269-7274.   DOI
32 J.G. Bang, J.H. Baek, Y.H. Jeong, P07G24 determination of terminal solid solubility of hydrogen in zirconium alloys, Korean Nuclear Society 2004 (2004) 1028-1032.
33 D. Khatamian, DSC "peak temperature" versus "maximum slope temperature" in determining TSSD temperature, J. Nucl. Mater. 405 (2) (2010) 171-176.   DOI
34 G.J.C. Carpenter, The dilatational misfit of zirconium hydrides precipitated in zirconium, J. Nucl. Mater. 48 (3) (1973) 264-266.   DOI
35 Y.S. Kim, Delayed hydride cracking of spent fuel rods in dry storage, J. Nucl. Mater. 378 (1) (2008) 30-34.   DOI
36 K.S. Chan, An assessment of delayed hydride cracking in zirconium alloy cladding tubes under stress transients, Int. Mater. Rev. 58 (6) (2013) 349-373.   DOI
37 D. Khatamian, Effect of ${\beta}$-Zr decomposition on the solubility limits for H in Zr-2.5Nb, J. Alloys Compd. 356-357 (2003) 22-26.   DOI
38 S.A. Parodi, L.M.E. Ponzoni, M.E. De Las Heras, J.I. Mieza, G. Domizzi, Study of variables that affect hydrogen solubility in ${\alpha}+{\beta}$ Zr-alloys, J. Nucl. Mater. 477 (2016) 305-317.   DOI
39 D.J. Cameron, R.G. Duncan, On the existence of a memoty effect in hydride precipitation in cold-worked Zr-2.5% Nb, J. Nucl. Mater. 68 (3) (1977) 340-344.   DOI
40 G.J.C. Carpenter, J.F. Watters, R.W. Gilbert, Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys, J. Nucl. Mater. 48 (3) (1973) 267-276.   DOI
41 G.J.C. Carpenter, J.F. Watters, An in-situ study of the dissolution of ${\gamma}$-zirconium hydride in zirconium, J. Nucl. Mater. 73 (2) (1978) 190-197.   DOI
42 J.-S. Kim, S.-D. Kim, J. Yoon, Hydride formation on deformation twin in zirconium alloy, J. Nucl. Mater. 482 (2016) 88-92.   DOI
43 G.F. Slattery, The terminal solubility of hydrogen in the zirconium/2 at % chromium/0.16 at % iron alloy, J. Nucl. Mater. 32 (1) (1969) 30-38.   DOI
44 J.-S. Kim, J.-D. Hong, Y.-S. Yang, D.-H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259.   DOI
45 M.P. Puls, The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals, Acta Metall. 29 (12) (1981) 1961-1968.   DOI
46 Z.L. Pan, I.G. Ritchie, M.P. Puls, The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys, J. Nucl. Mater. 228 (2) (1996) 227-237.   DOI
47 A. McMinn, E.C. Darby, J.S. Schofield, Terminal Solid Solubility of Hydrogen in Zirconium Alloys, vol. 1354, ASTM special technical publication, 2000, pp. 173-195.
48 Z.L. Pan, M.P. Puls, Precipitation and dissolution peaks of hydride in Zr-2.5Nb during quasistatic thermal cycles, J. Alloys Compd. 310 (1-2) (2000) 214-218.   DOI
49 Y. Kim, S. Choi, Y. Cheong, Review of the initiation and arrest temperatures for delayed hydride cracking in zirconium alloys, Met. Mater. Int. 11 (1) (2005) 39-47.   DOI
50 S.Q. Shi, G.K. Shek, M.P. Puls, Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 218 (2) (1995) 189-201.   DOI
51 U.S. Nuclear Regulatory Commission (NRC), Interim Staff Guidance-11, 2003. Revision 3.
52 G.F. Slattery, The terminal solubility of hydrogen in zirconium alloys between 30 and $400^{\circ}C$, J. Inst. Met. 95 (1967) 43-47.
53 M. Ito, K. Ko, H. Muta, M. Uno, S. Yamanaka, Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4, J. Alloys Compd. 446-447 (2007) 451-454.   DOI
54 M.C. Billone, T.A. Burtseva, Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding, Argonne National Lab. (ANL), Argonne, IL (United States), 2016, pp. 1-94.