• 제목/요약/키워드: Hydraulic pipeline

검색결과 111건 처리시간 0.021초

유압관로의 주파수변화 따른 압력전파특성 (A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline)

  • 유영태;나기대;김지환
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

사축식 액셜 피스톤 펌프의 압력맥동 감소 (Reduction in Pressure Ripples for a Bent-Axis Piston Pump)

  • 김경훈;손권;장주섭
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.109-116
    • /
    • 2004
  • Bent-axis piston pump have been commonly used in hydraulic systems because of high pressure level, best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the bent-axis piston pump require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the bent-axis piston pump was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a parallel line could reduce the discharge pressure wave of the pump well. The analysis model of the bent-axis piston pump developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

유압관로의 비정상유동에 따른 임피던스 전달특성 (A Characteristics of Impedance Propagation by the Unsteady Flow in a Hydraulic Pipeline)

  • 모양우;유영태;나기대;김지환
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.48-55
    • /
    • 2004
  • Design for quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response of design of hydraulic circuit. Experimental investigations on the attenuation of pressure ripple in automotive power steering hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is p개posed to support a design of the hydraulic circuit. and the impedance characteristics of pressure ripple is analyzed. It is experimentally shown that power steering hydraulic pipe attenuates pressure ripple with high frequency.

유압전동장치의 유량 압력맥동 특성 (Flow and Pressure Ripple Characteristics of Hydrostatic Transmissions)

  • 김도태;윤인균
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.120-126
    • /
    • 2001
  • This study deals with a flow and pressure ripple characteristics for a hydrostatic transmission(HST) consisting of a vari-able axial piston pump connected in an open loop to a fixed displacement axial piston motor. These flow ripples produced by pump and motor in HST interacts with the source impedances of the pump or motor and dynamic characteristics of the connected pipeline, and results in a pressure ripples, Pressure ripples. Pressure ripples in HSP is major source of vibration, which can lead to fatigue failure of components and cause noise. In this paper, the flow ripples generated by a swash plate type axial piston pump or motor in HST are measured by making use of hydraulic pipeline dynamics and the measured pressure data at two points along the pipeline. By using the self-checking functions, the validity of the method us investigated by comparison with the measured and estimated pressure ripples at the halfway section of the pipeline, and good agreement is achieved.

  • PDF

유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구 (A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps)

  • 이상기
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF

준설시험루프를 이용한 모래-물 혼합물 배송에 관한 연구 (Study of Hydraulic Transport of Sand-water Mixture by a Dredging Test Loop)

  • 이만수;박영호;이영남;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1504-1511
    • /
    • 2005
  • The efficiency of the hydraulic transport of soil-water mixtures is an important factor in designing and operating a pump & pipeline system and is directly connected with dredging cost and working period. However, the hydraulic transport mechanism in the slurry flow inside the pipeline such as frictional losses, specific energy consumption, deposition velocity has not been well established. In this study a new dredging test loop system was designed and built. It is composed of a slurry pipeline with pipes of different diameters, a centrifugal slurry pump and a diesel engine connected with the slurry pump. and equipped with modern measuring facilities that enable to measure all important characteristics of a transportation system. The objective of this paper is to discuss the efficiency of the hydraulic transport of the Jumoonjin sand-water mixtures in the dredging test loop and to present simple equations induced from the test results of the loop that can express the transport product and the transport productivity.

  • PDF

벨로스형 어큐뮬레이터의 압력 맥동 감쇠 특성 (Attenuation of Pressure Fluctuations in Oil Hydraulic Pipeline with Bellows Type Accumulator)

  • 이일영;정용길;이수종
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.31-37
    • /
    • 2001
  • Pressure propagation and attenuation characteristics in a hydraulic pipeline with a bellows type accumulator was investigated by theoretical analyses and experiments. In the first stage of the study, equations to evaluate the amount of oil volume charged into the bellows together with nitrogen gas were proposed. In the next stage, the authors suggested a mathematical model based on transfer matrix method to describe the dynamic characteristics of the pipe element with a metal bellows type accumulator. Through comparisons and considerations of the experimental and the numerical data shown in frequency domain, the validity of the mathematical model was confirmed.

  • PDF

펌프관로계의 수격현상 해석 (An analysis of water hammer in pipeline systems with pump)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.92-99
    • /
    • 1998
  • Unsteady flow problems created by hydraulic transients in pipeline systems with pump are of significant importance because they can cause excessive pressure, cavitation, vibration and noise. In this paper, an analysis of transient flow for the pump pipelines is developed by means of the characteristic method. The calculated results of the program to simulate water hammer due to sudden valve closure in a simple pipeline are compared with those of the analytical method. Expecially the water hammer due to power failure in pump pipeline system with surge tank was simulated. As the results, both the upsurge and the downsurge along the pipeline are reduced.

  • PDF

위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력맥동 감소에 대한 연구 (A Study on the Reduction in Pressure Ripples for a Bent-Axis Piston Pump by a Phase Interference)

  • 김경훈;최명진;이규원;장주섭
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.103-110
    • /
    • 2004
  • Pressure ripples yield noise and vibration in hydraulic pipelines, which are inevitably generated by a fluctuation of flow rate in the pump mechanism, and such noise and vibration deteriorate the stability and accuracy of hydraulic systems. To reduce the pressure ripples, accumulator and hydraulic attenuator are normally used. In this study, parallel pipeline with a bent-axis piston pump is introduced to a hydraulic pipe system as a method for reducing the pressure ripples and using the transfer matrix method, the dynamic characteristics of the pipe system are analysed and compared with experimental results. The results show that the phase interference using parallel pipeline with a bent-axis piston pump is effective to reduce the pressure ripples in the hydraulic pipelines.

팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠) (Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump))

  • 이상기
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF