• Title/Summary/Keyword: Hydraulic oil temperature

Search Result 61, Processing Time 0.027 seconds

CFD-FEA ANALYSIS OF HYDRAULIC SHOCK ABSORBER VALVE BEHAVIOR

  • Shams, M.;Ebrahimi, R.;Raoufi, A.;Jafari, B.J.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.615-622
    • /
    • 2007
  • In this study, a Coupled Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) method are used to predict and evaluate the performance of an automotive shock absorber. Averaged Navier-Stokes equations are solved by the SIMPLE method and the RNG $k-\varepsilon$ is used to model turbulence. CFD analysis is carried out for different intake valve deflections and piston velocities. The force exerted on the valve in each valve deflection is obtained. The valve deflection-force relationship is investigated by the FEA method. The force exerted on the valve in each piston velocity is obtained with a combination of CFD and FEA results. Numerical results are compared with the experimental data and have shown agreement. Dependence of valve deflection as a function of piston velocity is investigated. Effects of hydraulic oil temperature change on valve behavior are also studied.

In-line Smart Oil Sensor for Machine Condition Monitoring (기계 상태진단을 위한 인-라인형 오일 모니터링 스마트 센서)

  • Kong, H.;Ossia, C.V.;Han, H.G.;Markova, L.
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.111-121
    • /
    • 2008
  • An integrated in-line oil monitoring detector assigned for continuous in situ monitoring multiple parameters of oil performance for predicting economically optimal oil change intervals and equipment condition control is presented in this study. The detector estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical intensity of oil in three optical wavebands ("Red", "Green" and "Blue") and water content is evaluated as Relative Saturation of oil by water. The detector is able to monitor oils with low light absorption (hydraulic, transformer, turbine, compressor and etc. oils) as well as oils with rather high light absorption in visible waveband (diesel and etc. oils). In a case study that the detector is applied to a diesel engine oil, it is found that the detector provides good results on oil chemical degradation as well as soot concentration.

A Study on Oil Hydraulic Heat Generation System for Wind Energy Utilization (풍력에너지 이용을 위한 유압식 열변환 장치에 관한 연구)

  • Lee, Il-Young;Gong, Tae-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.402-412
    • /
    • 1995
  • A new energy conversion system which converts wind energy directly to heat instead of transforming it to electric power beforehand is suggested in this study. The new energy conversion system is composed of two big parts divided by their functions. One of them is a wind turbine part, and another is the heat energy conversion part. The object of this study is confined only to the heat energy conversion part, so the wind turbine is replaced with an electric motor for the convenience of experiment. In the experimental process, pressure difference at the hydraulic pump, revolution speed of the hydraulic pump, temperature at a few points on the oil circuit and the water circuit are measured at time intervals of five minutes. And integral values of input energy to the system and stored energy in the system is investigated.

  • PDF

Optimization of Polishing Conditions for Anodized Inner Surfaces in Large Hydraulic Devices (아노다이징 처리된 대형 유압장치의 내면에 대한 연마 조건의 최적화)

  • Choi, Su-Hyun;Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.14-21
    • /
    • 2019
  • Large-diameter hydraulic devices such as the hydraulic reservoir in aircraft that serves to balance the hydraulic pressure in the various hydraulic devices in the cabin and to store hydraulic oil are operated by the internal piston systems. However, since this operates in an environment with high temperature and humidity, it may cause the inner surface to flake during its operation. Therefore, an anodizing surface treatment is applied to improve the corrosion resistance, abrasion resistance, and smooth operation. However, anodizing increases the surface roughness. Accordingly, the polishing process that improves the surface roughness after anodizing is important. However, the existing polishing process is performed manually, which results in an inefficient process. Therefore, in this study, we selected the optimum polishing conditions for effective polishing using the experimental design to improve the polishing process for the $Al_2O_3$ film that forms after anodization. Through experiments, we confirmed that the surface uniformity after polishing was superior as the feed rate was slower when the same polishing time had been applied.

Development and Application of Thermal hydraulic Simulation Model for Aircraft-EHA(Electro-Hydrostatic Actuator) (항공기용 EHA의 열유동 해석모델 개발 및 활용)

  • Noh, Dae-Kyung;Yoon, Young-Whan;Kim, Dae-Hyun;Kim, Sang-Seok;Kim, Sang-Beom;Park, Sang-Joon;Choi, Kwan-Ho;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This study attempts to show an example of developing and applying thermal hydraulic simulation model for Aircraft-EHA. The overview of research procedure is as in the following. First, The unit hydraulic simulation model, which reflects physical quantity answering engineer's purpose is developed. Second, The unit hydraulic simulation model is combined, and then branched out to EHA hydraulic model. Third, a simulation model including flow thermal is developed, and then oil temperature rise time according to 'initial temperature and load' is examined. Finally, the master graph that can be used for designing EHA combined with thermal hydraulic analysis results in several cases is compiled, and suggested. AMESim, commercial software, is used through whole procedure.

An Experimental Study on Characteristics of Cooler by Oil Pressure for Decreasing Heat Load in Cold Storage (냉동창고 내 열부하 감소를 위한 유압 구동식 냉각기의 특성에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1116-1122
    • /
    • 2009
  • As a result of this study, we reached the following conclusions. With appropriate setting of oil pressure and flow rate, it operated same rotation speed with existing cooler by electrical transmission. In initial operation, a temperature of a cold storage is lower rapidly. As an internal temperature of a cold storage is lower, a decreasing rate of temperature is lower. As a result of comparing the both type, the cooler of oil pressure type showed the following results. The decreasing rate of temperature was more faster and shorter operating time was more shorter than existing cooler of electric type. The actual case of a cold storage, the cooler of oil pressure type can prevent quality deterioration and decrease power consumption. As an internal temperature of a cold storage is lower, power consumption increased rapidly, the oil pressure type showed lower power consumption. COP of two of these types decreased continuously as the internal temperature of a cold storage being reach setting temperature, and that of oil pressure type showed higher amount about 25%. As a setting temperature is lower, the number of refrigerator's operating times are less and operating time is longer, so power consumption is increased in the maintenance of a cold storage's internal temperature, power consumption of hydraulic type showed lower amount about 21~25% in two of these types.

A Study on Process Design of Hot Oil Flushing System Using Oil-Nitrogen Gas Mixing Fluid (오일-질소가스 혼합유체를 이용한 고온 오일플러싱 시스템 공정설계에 관한 연구)

  • Lee, Yoon-Ho;Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.541-548
    • /
    • 2017
  • A theoretical study on gas-liquid two-phase flow flushing systemnitrogen gas to the oil used for existing flushing equipment was conducted on the basis of ISO code so as to improve performance of existing high-temperature oil flushing equipment used in ocean plant facility drying field. For study, we analyzed process simulation results mixed fluid mixing ratio, temperature, Reynolds number and liquid hold up affectcleaning performance after designing oil-nitrogen gas mixture flushing system process. As a result, as the volume flow rate of mixed fluid increases with the tube diameter the volume fraction of the gas phase constant, the liquid fraction difference value at the inlet and outlet of horizontal hydraulic piping increases. It was found that the phase distribution between oil and nitrogen gas bubbles varies depending on the position the pipe lengthdirection. This change in phase distribution is expected to have a significant impact on the clean performance of an oil-nitrogen gas mixture flushing system.

Closed loop type MCV(Main Control Valve) for Hydraulic Excavator (유압 굴삭기용 폐루프 타입 MCV(Main Control Valve))

  • Lim T.H.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF

Analysis of Behavior Characteristics of Water Pollutants in Yeongsan River Using 3D Hydraulic Model (3차원 수리 모델을 이용한 영산강 수질오염물질의 수체 내 거동 특성 분석)

  • Hye Yeon Oh;Eun Jung Kim;Jung Hyun Choi
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.439-450
    • /
    • 2023
  • The Yeongsan River, a major water resource for Jeollanam-do, that is adjacent to industrial complexes and agricultural areas, is exposed to water pollution. Therefore, it is necessary to investigate the impact of water pollution incidences and prepare response systems for river environment safety for other water resources in the future. Environmental Fluid Dynamics Code (EFDC) was applied to the mainstream of the Yeongsan River where residential, commercial, and agricultural areas are located to analyze the behavior of pollutants conducting the scenario analysis. Considering the pollutants that affected the study area, two pollutants, oil and benzene, with different physical and chemical characteristics were selected for the analysis. As a result of comparing the actual and simulated values of the water elevation, temperature, and flow rate, it was confirmed that the model adequately reproduced the hydraulic characteristics of the Yeongsan River. The oil flow dynamics showed that an increase in flow rate led to reduction in the maximum height of the slick. Notably, the behavior of the oil was predominantly influenced by the wind conditions. In the case of benzene, lower flow scenarios exhibited decreased arrival times and residence times accompanied by an elevation in the maximum concentration levels. From the results of pollutant behavior in the study area, it is feasible to utilize the section of tributary confluence for collection and the weir area for dilution. This study enhances the understanding of the pollutant's behavior with different characteristics and develops effective control systems tailored to the physicochemical attributes of pollutants.

Hydraulic fitting impulse tester development (유압 피팅 충격압시험기 개발)

  • 김형의;이용범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.917-921
    • /
    • 1991
  • Hydraulic fitting impulse tester is equipment which produce impulse pressure waveform that specified foreign standard of SAE, JIS etc. Test conditions of SAE J1453 about waveform standard indicates frequency of 35-70 cycle/min, pressure of 560 bar, oil temperature of 93 .+-.3.deg. C etc. and required cycle is a million over. In additions, Test condition operated continuously equipment. This development item adopted new pattern method such as intensifier and rotary distributor is different from already established fitting impulse tester applied servo valve and high pressure direct directional control valve. Therefore, this development item which compares already established item is good reliability, low cost of manufacture and save of electric energy. especially, Domestic small and medium enterprise uses this tester because of economical cause. We develope appropriateness tester which conforms to demand of user.

  • PDF