• Title/Summary/Keyword: Hydraulic model experiment

Search Result 313, Processing Time 0.033 seconds

Implementation and Test of Hydraulic Control System for the Tractor Leveling (트랙터의 수평제어를 위한 유압 시스템의 특성 실험)

  • Lee, S. S.;Oh, K. S.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.383-390
    • /
    • 1999
  • When a tractor travels slope lands, problems of operator safety and the reduction of job efficiency usually occur. Therefore, maintaining the tractor body being horizontal is critical to improve the security of traveling and the job performance. An experiment was made in a soil bin using the experimental model system built and equipped with a leveling control system. Adaptability of the control system was tested and investigated by analyzing system response in time and frequency domains. Control response time of hydraulic cylinder with 10lpm flow rate on a step input of 10$^{\circ}$slope was about 0.42sec. And it showed a linearly increasing trend without any hunching state. A steady state error of 0.6$^{\circ}$occurred but it was negligible. The hydraulic control system showed a little phase differences within the range of 0.4Hz input frequency. The experimental model showed that implementation of the proposed tractor control system to on slope lands tractor was feasible.

  • PDF

The Propriety of Design Outlet Conduit of Dam by Hydraulic Model Experiments (수리모형실험을 활용한 댐 방류관 설계의 적정성 검토)

  • Choi, Byong-Kyu;Kang, Tae-Ho;Jung, Yo-Han
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.811-821
    • /
    • 2003
  • In this study is if the design of outlet conduit was appropriate or not by analyzing flow characteristic of outlet conduit with performing hydraulic model experiments. As the results of hydraulic model experiments, the capacity of outlet conduit of elementary design was under estimated, and the designed values of the capacity of outlet conduit of preliminary design based on the values of elementary design was nearly equal to the values of experiments, so the propriety of design was identified. In addition, as the results of examinations of negative pressure of outlet conduit, and propriety of longitudinal sections, the resulting values were within the maximum permissible limits, so it was proved that the design was appropriate. In the base of such processes, the propriety of scale and location of outlet conduit of preliminary design was examined.

Analysis on the Results of Tidal Wave Hydraulic Model using Radioisotope (동위원소를 이용한 조파수리 모형실험 해석)

  • Kim, Ki Chul;Park, Geon Hyeong;Jung, Sung Hee;Lee, Jung Lyul;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 2011
  • A laboratory experiment using a radioisotope was performed to analyze the characteristics of transport and diffusion of a pollutant released from industrial plants. A wave hydraulic model based on the similarity theory was constructed and used to reappear the tidal wave in the laboratory. Two-dimensional numerical models were used to reproduce the results of a wave hydraulic model. The measured and calculated concentrations were compared with the same conditions. As a result of the comparative study, the time of maximum concentration showed slight difference between them, but the values of maximum concentration were relatively well agreed.

Improvement of the subcooled boiling model for the prediction of the onset of flow instability in an upward rectangular channel

  • Wisudhaputra, Adnan;Seo, Myeong Kwan;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1126-1135
    • /
    • 2022
  • The MARS code has been assessed for the prediction of onset of flow instability (OFI) in a vertical channel. For assessment, we built an experiment database that consists of experiments under various geometry and thermal-hydraulic condition. It covers pressure from 0.12 to 1.73 MPa; heat flux from 0.67 to 3.48 MW/m2; inlet sub-cooling from 39 to 166 ℃; hydraulic diameters between 2.37 and 6.45 mm of rectangular channels and pipes. It was shown that the MARS code can predict the OFI mass flux for pipes reasonably well. However, it could not predict the OFI in a rectangular channel well with a mean absolute percentage error of 8.77%. In the cases of rectangular channels, the error tends to depend on the hydraulic diameter. Because the OFI is directly related to the subcooled boiling in a flow channel, we suggest a modified subcooled boiling model for better prediction of OFI in a rectangular channel; the net vapor generation (NVG) model and the modified wall evaporation model were modified so that the effect of hydraulic diameter and heat flux can be accurately considered. The assessment of the modified model shows the prediction of OFI mass flux for rectangular channels is greatly improved.

Analysis of a Variable Damper and Pneumatic Spring Suspension for Bicycle Forks using Hydraulic-Pneumatic Circuit Model (유공압 회로를 이용한 자전거 포크용 가변댐퍼-공압스프링 서스펜션의 해석)

  • Chang, Moon Suk;Choi, Young Hyu;Kim, Su Tae;Choi, Jae Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • The objective of this study was to present a damped pneumatic suspension, a bike fork suspension, which can adapt itself to incoming road excitations is presented in this paper. It consists of a hydraulic damper and a pneumatic spring in parallel with a linear spring. The study also proposed a variable and switchable orifice, in the hydraulic damper, to select appropriate damping property. Hydraulic-pneumatic circuit model for the bike fork suspension was established based on AMESim, in order to predict its performance. In addition, elastic-damping characteristics of the fork such as spring constant and viscous damping coefficient were computed and compared, for validation, with those evaluated by experiment using the universal test machine. Through simulation analysis and test, it was established that the hydraulic-pneumatic circuit model is effective and practical for development of future MTB suspensions.

Experiments for Wave Transformation of Regular and Irregular Waves over a Submerged Elliptic Shoal(I) : Non-breaking Conditions (타원형 수중천퇴상의 규칙파 및 불규칙파의 전파변형 실험(I):비쇄파조건)

  • 이종인;이정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Hydraulic model experiments were conducted fur a series of regular and uni-directional irregular waves propagating over a submerged elliptic shoal. Two different sets of experiments have been studied; one considers regular wave transformation with no breaking, and the other considers uni-directional irregular wave with partial breaking on top of the shoal. The numerical experiments are also performed using a numerical model based on the parabolic approximation equation. The result of the numerical experiments are compared with that of hydraulic experiments.

Hydraulic Experiment on the Effects of Beach Erosion Prevention with Flexible Coastal Vegetation (연성 식생모형에 의한 해빈침식방지 특성에 관한 실험적 연구)

  • Lee, Seong-Dae;Park, Jung-Chul;Hong, Chang-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Coastal vegetation consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of currents and waves and sediment stabilization are often listed among these services. From this point of view, artificial seaweed is an effective method of controlling sea bed sediment and stabilization without damaging the landscape or the stability of the coastline. A series of hydraulic experiments were performed in a wave channel with regular and irregular waves to examine the effect of artificial seaweed in relation to scouring and beach erosion prevention. Based on the results of these experiments, the coastal vegetation model is efficient against scouring and beach erosion.

Establishment present of fish-road in Kangwondo and Study to apply fish-road is ice harbor 1-type (강원도 어도의 설치 현황 및 I형 아이스하버식 어도 적용성 연구)

  • Choi, Han-Kuy;Choi, Young-Soo;Jeon, Young-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.63-71
    • /
    • 2006
  • The concerned object of the construction industry is environment. It is one of the main purposes of today's construction that human can live reasonably in nature. This study is about the fish-road connecting hydraulic structure in the river with nature. Chapter 2, starting with the general investigation about fish-road and helps comprehension for relatively general fish-road such as necessity, establishment purpose, history, study example, relating domestic law, design condition, consideration and form of fish-road. Chapter 3, containing the present condition of fish-road facilities in Gangwon-Do and thoughts of the problems and general countermeasures of existing fish-road. Chapter 4, Having Examined compatibility by amount of flowing water through hydraulic model test in the Ice harbor I-type model. chapter 5, Analyzation and arrangement to efficient establishment plan of fish-road and the result of the hydraulic model experiment to be beaconed a little in forward fish-road study. In the hydraulic model test result, when we suppose establishment of 1~3 in slope of 1/20, could know that applicable drought flow of the river is $0.06{\sim}3.0m^3/sec$ in case of Ice harbor I-type which transforming Ice harbor that was invented as studying project of the Ministry of Environment.

  • PDF

Comparison of Simulation Models for Train Buffer Couplings (연결기용 완충기의 시뮬레이션 모델 비교)

  • Jang, Hyeon-Mog;Kim, Nam-Wook;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2010
  • Coupling systems for trains need more complicated buffer equipments than existing systems because the recent tendency of the regulations enforces trains to be safe for collisions even when the driving speed is higher than before. Using hydraulic buffer is an effective way to satisfy the requirement while it causes the increase of the cost for the coupling system. In this study, we introduce the methodology to build a simulation model for the hydraulic buffer, which could be installed into the coupling systems. In the simulation model of the hydraulic buffer, the reacting force is determined by both buffer stroke and speed whereas the elastic buffer model is designed by using only the buffer stroke in other studies. The simulation results with the advanced hydraulic buffer model shows that the simulating results can be close the real experimental results around 10%, and, if we considers friction forces, the simulation calculates the maximum force within 10% comparing to the experimental.

Application of LSIV to Hydraulic Model Experiment on River Confluence (LSIV를 이용한 하천 합류부 수리 모형 실험)

  • Koh, Seok-Hyun;Yu, Kwon-Kyu;Yoon, Byung-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.63-68
    • /
    • 2005
  • LSIV (Large Scale Image Velocimetry), a technique of image analysis on velocity measurement, was applied to a hydraulic model experiment of river confluence. The surface velocities measured by using LSIV showed similar results with the mean velocities by using a traditional velocimeter, While a general velocimeter can measure only local point velocity, LSIV can measure whole velocity field with one shot. When it is applied to river confluence or around a bridge pier where local flow is dominant, LSIV may be a powerful tool to measure velocity field.