• 제목/요약/키워드: Hydraulic hose

검색결과 37건 처리시간 0.023초

압력과 온도 복합가속모형을 적용한 유압호스 조립체 수명특성 연구 (A Study of Life Characteristic of Hydraulic Hose Assembly by Adopting Complex Accelerated Model with Acceleration Factors of Pressure and Temperature)

  • 이기천;김형의;조유희;김재훈
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1697-1703
    • /
    • 2010
  • 유압호스는 건설기계, 자동차, 항공기 등 각종 기계의 유압장치에서 동력을 전달하기 위한 배관으로 사용된다. 산업의 전분야에서 에너지를 전달하기 위한 배관의 한 종류로서 진동이나 충격 등으로부터 시스템을 보호하는 역할을 한다. 여러 가지 외부 환경 조건으로부터 시스템을 유지하기 위해서는 호스 조립체에서 온도와 압력 등의 외부 환경 조건에 대한 내성을 가지고 있어야만 한다. 본 연구에서는 기존에 호스 조립체에 대해 온도 또는 압력 중 한 가지 인자를 고려한 가속모형을 제시한 연구는 있었지만 두 가지 인자를 동시에 고려한 가속모형은 제시하지는 못하였으므로, 호스 조립체의 압력과 온도를 모두 고려한 복합가속 모형식을 제안하는 것을 목적으로 한다.

유압 관로망에서 고압호스의 압력 맥동 감쇠 특성 해석법 개발 (Development of Analyzing Method for Pressure Fluctuations in Oil Hydraulic Pipe Network Including Flexible Hose Element)

  • 이일영;송상훈;정용길;양경욱
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.45-51
    • /
    • 1998
  • An analyzing method for pressure fluctuations in oil hydraulic pipe network was developed in this study. The object pipe network has multi-branch configuration, and the pipelines of it are composed of metal tubes and flexible hoses. Transfer matrix method, in other words impedance method, was used for the analysis. Values of physical parameters describing the characteristics of flexible hose were measured by experiments and reflected to the analysing procedure. The reliability and usefulness of the analyzing method were confirmed by investigating computed results and experimental results got in this study.

  • PDF

Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.949-962
    • /
    • 2016
  • The braking hose in the automotive hydraulic braking system exhibits the complicated anisotropic large deformation while its movable end is moving along the cyclic path according to the steering and bump/rebound motions of vehicle. The complicated large deformation may cause not only the interference with other adjacent automotive parts but also the durability problem resulting in the fatal microcraking. In this regard, the design of high-durable braking hose with the interference-free layout becomes a hot issue in the automotive industry. However, since it has been traditionally relied on the cost-/time-consuming trial and error experiments, the cost- and time-effective optimum design method that can replace the experiment is highly desirable. Meanwhile, the hose deformed configuration and fatigue life are different for different hose cyclic paths, so that their characteristic investigation becomes an important preliminary research subject. As a preliminary step for developing the optimum design methodology, we in this study investigate the hose deformed configuration and the fatigue life for four representative hose cyclic paths.

PWM 제어 고속 온-오프 전자밸브에서 발생하는 압력맥동 저감 (Pressure Ripple Reduction in High Speed On-Off Solenoid Valves Driven by PWM Control)

  • 김도태;이상권
    • 유공압시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.8-13
    • /
    • 2005
  • This paper investigates a fast, accurate and inexpensive hydraulic motor speed control system using high speed on-off solenoid valves. In order to retain the advantages of the two position valve and obtain better performance, the valves are operated by pulse width modulation(PWM) control. PWM signal is generated from a LabWIEW program in microcomputer in order to set up various duty ratio and frequency of carrier wave in PWM signal with varying system parameters. As the results of experiments, the speed control of a hydraulic motor was successfully implemented using on-off solenoid valves. In order to attenuate the pressure ripple and speed variation due to discontinuously controlled flow through the on-off valves, a resonator hose fabricated for automobile power steering system was connected between the valve and a hydraulic motor. From experimental results obtained in the hydraulic motor system with a resonator hose, it was ascertained that the resonator hose showed excellent performances in reducing pressure ripple and motor speed variation.

  • PDF

고압호스 조립체의 가속수명시험에 관한 연구 (Study of the high pressure hose assemblies by accelerated life test)

  • 이기천;이용범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.886-892
    • /
    • 2013
  • 고압호스 조립체는 건설기계, 선박, 항공기, 산업기계, 공작기계 및 자동차 등의 각종 유압장치에 널리 유압배관으로 사용된다. 이는 유연성이 필요한 부분에 유체동력($P^*Q$)으로 전달해야 함으로서, 고장이 발생할 경우는 유압시스템 전체가 작동이 불가능함으로서 신뢰성이 매우 중요한 부품이다. 가속 수명 시험 데이터는 와이블분포 분석을 통해서 형상 모수를 추종 하였다. 본 시험연구에서는 실제 가속수명시험 조건의 충격압력과 반복 굽힘을 변화시켜 시험시간을 감소시켰다. 가속수명시험 모형은 GLL(generalized linear)모형을 사용하였으며, 충격압력과 반복 굽힘에 대한 가속지수는 각각 6.64와 4.46으로 확인되었다. 또한 시험 결과에 대한 분석결과 형상모수(${\beta}$)는 6.19이며, 실제 사용조건인 35 MPa과 굽힘 반경 R100 mm를 적용하였을 경우 척도모수(${\eta}$)는 $1.035{\times}108$사이클로 확인되었다.

유압회로 설계를위한 유압관로에서의 동특성연구 (A Study of Dynamic Response in a Pipeline for Design of Hydraulic Circut)

  • 김지환;김광호;신유환;유영태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2024-2030
    • /
    • 2003
  • Design for a quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response for design of hydraulic circuit. Experimental investigations on the attenuation characteristics of pressure ripple in automotive power steering hydraulic pipe with dynamic response of hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is proposed to support design of the hydraulic circuit and analyze the attenuation characteristics of pressure ripples in a hydraulic pipe line. And analyze the impedance characteristics to determine the postion to construct accumulator for attenuation the pressure pulsation. The experimental results show that the pulsation attenuation characteristics of hydraulic hoses is remarkably affected by the flexible metal tube inserted coaxially inside a hydraulic hose with a finite length as well as viscoelastic properties of hose wall. It is also shown that the predicted results by the model proposed here agree well with the measured results over a wied range of frequency;

  • PDF

유압 호스의 진동 내구성 평가를 위한 지그의 구조적 안정성에 관한 연구 (A Study on the Structural Stability of a Jig for Evaluating the Vibration Durability of a Hydraulic Hose)

  • 김재실;전민승
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.125-131
    • /
    • 2021
  • For the vibration reliability tests, the jigs for mounting the test specimen on a vibration reliability tester are required. The dynamic stabilities of the jigs should be verified before the tests for obtaining the accurate reliability of the test specimen. This paper proposes an analytical technology for ensuring the dynamic structural stability for the test setup including the jig. The technology includes the mode analyses for checking resonance, the harmonic analyses for evaluating the dynamic structural stability of test setup including the jig, and the fatigue analyses for obtaining the durable reliability time with calculating the life cycles at the area of weakness. The cause investigation of the damaged jig during vibration reliability test of a rubber hose and the design of new revised jig are performed by using the technology. The vibration reliability test for the rubber hose with the new revised jig by analysis results is successfully conducted without any problem. Therefore the jig's design technology proposed in this paper may be useful for other items as well.

온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구 (A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model)

  • 이기천;김형의;조유희;심성보;김재훈
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권3호
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

저압 호스용 밴드의 체결특성에 관한 연구 (A Study on Swaging Characteristics of Band for Low Pressure Hose)

  • 김영규;김필종;조석범;권부길
    • 한국가스학회지
    • /
    • 제9권3호
    • /
    • pp.32-37
    • /
    • 2005
  • LP가스나 도시가스시설의 저압 호스 체결에서 견고함과 기밀성을 높이기 위해 호스밴드를 사용한다. 본 연구에서는 호스밴드의 성능 파악과 안전한 체결 거리의 제시를 위하여 호스밴드에 대한 내압강도와 당김력을 측정하였다. 호스밴드의 체결력은 스프링밴드 보다는 귀형밴드에서 높게 나타났으며 최적의 호스밴드 체결거리는 호스접속 끝단부로부터 1${\~}$2 mm일 때에 우수한 것으로 파악되었다.

  • PDF

항공기용 연료호스의 빔 시일 피팅의 형상변화에 따른 접촉특성에 관한 연구 (A Study on Contact Characteristics by the Geometry Variation of Beam Seal Fitting of an Aircraft Fuel Hose)

  • 전준영;김병탁
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.101-108
    • /
    • 2013
  • An aircraft fuel hose is a kind of high pressure hose, and generally consists of a nipple, a socket, an inner tube, and a reinforcement layer to increase the tensile strength. Especially the nipple supports the other components in manufacturing stages such as the swaging or crimping processes however, the nipple also serves to prevent leakage in cases of hose engagement with a hydraulic system. To ensure the seal of the hose assembly, a beam seal fitting with metal-to-metal contact is usually adopted at the end of a nipple. Therefore, the geometry of the beam is an important parameter to be determined to make sure there is sufficient contact force. This study aims to investigate the effects of beam seal geometry on the contact force by changing the inclined angle and the thickness of the beam. The results reveal that the proper thickness and inclined angle of the beam seal are 0.45 mm and $8.5^{\circ}$, respectively.