• Title/Summary/Keyword: Hydraulic fracture

Search Result 197, Processing Time 0.027 seconds

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Applicability of CGS for Remediation and Reinforcement of Damaged Earth Dam Core (손상된 흙댐 코어의 보수.보강을 위한 CGS 공법의 적용성)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.325-334
    • /
    • 2003
  • It is very difficult to rehabilitate the damaged earth dam core to manage it stably against development of flow path and increase of leakage by hydraulic fracture. In this study, application of CGS (Compaction Grouting System) to damaged earth dam core was noticed by analyzing and comparing the results of the in-situ data and FEM. Results of in-situ data showed that according as progress of rehabilitation works tip pressures increased and volume of injection decreased, voids of damaged dam core were filled with materials similar to origin dam core. Rehabilitations caused turbidity and volume of leakage to decrease at the same water level. Also, results of FEM analysis indicated that permeability decreased by rehabilitation. Through this study, it is proved that CGS is able to decrease permeability coefficient, volume of leakage and turbidity on damaged earth dam core.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

A Study on Shear Behavior of High Strength Reinforced Concrete Beams (고강도 철근콘크리트 보의 전단거동에 관한 연구)

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.68-79
    • /
    • 1998
  • In the years, the concern about high-strength concrete which is new material has been heightened as a result of active research and development. Recently, as the building structure has been being bigger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. The demand of high -strength concrete is expected to increase with expansion of usage about the complex concrete structures such as bridge structure as well as nuclear plants, underground structures, hydraulic structures and arctic area sturctures. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. Water/binder ration was limited no more than 18 percent and the amount of unit cement was increased. In this study, a number of trial in concrete mix was carried out to get optimal mix design, and the target slump with $10{\pm}2cm$ was set for in-situ construction. High-strength concrete with cylinder strength of 1,200kgf/$cm^2$ in the 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained form the static test. The test results were compared with the shear strengths predicted by the equations of ACI code 318-89 and orther researchers. Based on the test results, shear strength equation of reinforced concrete beam using high strength concrete was proposed. Form an evaluation of the results of this experimental investigation, it was concluded that shear strength after diagonal tention cracking diminished with the increase in compressive strength for beams.

  • PDF

Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks (원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발)

  • Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray computed tomography (CT) is very useful for the quantitative evaluation of internal structures, particularly defects in rock samples, such as pores and fractures. In situ CT allows 3D imaging of a sample subjected to various external treatments such as loading and therefore enables observation of changes that occur during the loading process. We reviewed state-of-the-art of in situ CT applications for geomaterials. Two triaxial cells made using relatively low density but high strength materials were developed aimed at in situ CT scanning during hydro-mechanical laboratory testing of rocks. Preliminary results for in situ CT imaging of granite and sandstone samples with diameters ranging from 25 mm to 50 mm show a resolution range of 34~105 ㎛ per pixel pitch, indicating the feasibility of in situ CT observations for internal structural changes in rocks at the micrometer scale. Potassium iodide solution was found to improve the image contrast, and can be used as an injection fluid for hydro-mechanical testing combined with in situ CT scanning.

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing (액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구)

  • Ha, Seong Jun;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.157-171
    • /
    • 2019
  • The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

A Study on the Field Application of Automatic Grouting System (자동화 그라우팅 기법의 현장적용성에 관한 연구)

  • Do, Jongnam;Park, Junghwan;Choi, Dongchan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • In Korea, grouting has been mostly designed and constructed by experiences without expert knowledge and theoretical study. So there are a lot of problems related to the quality and safty of grouting. Therefor, in this paper the quality management skills and method were discussed through out by using the auto-grouting method and field test of grouting for the construction. Through the limit water injection test of the soil, it make the optimum injection pressure and injection speed of grouting, and through the lugeon test of the rock, it make assess the permeability of before and after grouting. In order to prevent the hydraulic fracture of soil and break away from the grouts if it apply four kinds of mode of grouting stop criteria, injection effects can be improved. From the above characteristcs designers evalute the fitness values of injection pressure(p), injection speed(q) and grouting penetration time(t). So far, to record and manage pressure(p) and speed(q) of grouting autographic devices such as intergation flow-meter usually record data in a roll of paper. Intergration flow-meter can record grouting flow quantity exactly, but the recorded pressures differ from the any basis such as intitial, intermediate and final point. Therefore, it has been argued that is a need of reliable method to describe the connection between the pressure recorded by an intergration flow-meter and the special properties of the grouting target ground. auto-grouting method can describe the reliable connection between the grouting pressure and the special properties of the grouting target ground. So, in this paper by using auto-grouting method, it is expected that to secure basis of quality control techniques construction.

Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes (방사성폐기물 지하처분장에 대한 가상의 사례 연구를 위한 KURT 부지의 지하수 유동 모의)

  • Ko, Nak-Youl;Park, Kyung Woo;Kim, Kyung Su;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2012
  • Groundwater flow simulations were performed to obtain data of groundwater flow used in a safety assessment for a hypothetical geological disposal facility assumed to be located in the KURT (KAERI Underground Research Tunnel) site. A regional scale modeling of the groundwater flow system was carried out to make boundary conditions for a local scale modeling. And, fracture zones identified at the study site were involved in the local scale groundwater flow model. From the results of the local scale modeling, a hydraulic head distribution was indicated and it was used in a particle tracking simulation for searching pathway of groundwater from the location of the hypothetical disposal facility to the surface where the groundwater reached. The flow distance and discharge rate of the groundwater in the KURT site were calculated. It was thought that the modeling methods used in this study was available to prepare the data of groundwater flow in a safety assessment for a geological disposal facility of radioactive wastes.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.