• Title/Summary/Keyword: Hydraulic fluid

Search Result 1,203, Processing Time 0.02 seconds

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap (역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성)

  • Kim, Tag-Gyeom;Kim, Do-Sam;Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.203-216
    • /
    • 2021
  • Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.