• Title/Summary/Keyword: Hydraulic equation

Search Result 499, Processing Time 0.028 seconds

Control of the Hydraulic System Using the Global Sliding Mode Control (전역슬라이딩모드 제어를 이용한 전기유압 시스템의 제어)

  • 최형식;김명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.218-228
    • /
    • 2003
  • A hydraulic system is modeled as the second order differential equation with uncertain system parameters and disturbance composed of modeling errors. To Position the load of the hydraulic system to a desired point. the servo valve of the hydraulic system is controlled. As a control scheme. a global sliding mode control(GSMC) is Proposed Since the servo valve has a torque limit. the GSMC is designed to coordinate the position of the load along the minimum time trajectory within the torque limit. The Proposed control scheme can be designed with ranges of parametric uncertainties and specified torque limits. By the proposed control scheme, the closed form solution of the arriving time at the desired position can be estimated.

Improvement of Transient Response Charateristics of a Position Control Hydraulic Servosystem Using Observer (I) (관측기를 이용한 위치제어 유압 서어보 시스템의 과도응답 특성 개선 (I))

  • 이교일;조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.781-788
    • /
    • 1987
  • The state variables estimated in an observer were useed in feedback control of a hydraulic servosystem to increase the system stability and to enhance the system performance. The nonlinear hydraulic servosystem with the inherent nonlinearities due to the square root function of flow equation, the Coulomb friction and so on, was modelled as a fourth order linear hydraulic servosystem. Also, a second order linear system was derived for the observer-controller design. For these models, a fourth order linear observer and a second order linear observer were constructed respectively to evaluate the performance of the observer-based hydraulic servosystem. The results obtained from series of simulation showed that the system which had shown oscillatory phenomenon under proportional control became stable with the same maximum acceleration and velocity that it had started under proportional control.

TWO DIMENSIONAL STUDY OF HYDRAULIC FRACTURING CRITERIA IN COHESIVE SOILS

  • 유택영사
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03b
    • /
    • pp.3-12
    • /
    • 1994
  • Based on the shear failure mechanism, hydraulic fracturing criteria are extended to three dimensional stress state. According to the situation of the directions of borehole and major principal stress axes, three equations can be derived for three dimensional hydraulic fracturing problems. By comparing these equations, a single criterion is selected for hydraulic fracturing pressure in cohesive soils. The criterion is a function of maximum principal stress, minimum principal stress and soil parameters in UU conditions. The equation indicates that with any increase in maximim principal stress, hydraulic fracturing pressure decreases. In order to prove the integrity of the criteria, laboratory tests are performed on compacted cubical specimens using true a triaxial apparatus. The shape and direction of fractures are determined by injecting colored water after fracture initiation. It is found that the direction of fractures are perpendicular to the o1 plane.

  • PDF

Development of Hardware In the Loop System(HILS) for Hydraulic Excavator (굴삭기용 Hardware In the Loop System(HILS) 개발)

  • 임태형;조현철;안태규;양순용;이홍선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.468-473
    • /
    • 2004
  • This paper deal with basic concept of Hardware In the Loop System(HILS) for hydraulic excavator. Hydraulic excavator has many nonlinearities because of P-Q diagram, dead zone and saturation of valve, single acting cylinder, heavy manipulator. So, actual test is needed when new component or control algorithm is developed but many restrictions exist. Hydraulic circuit of excavator is too complex to model mathematically but dynamic equation of manipulator has made good progress in previous studies. Basic concept of HILS and AMESim model of hydraulic components is contained in this paper.

  • PDF

A Proposal for the Number of Investigation Wells for Optimal Radial Collector Well Design (방사형 집수정의 적정 설계를 위한 조사 물량 제안)

  • Choi, Myoung-Rak;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • In general, the estimation of optimum yield for the radial collector well is determined by the empirical equation or numerical modeling, in which hydraulic conductivity of the aquifer is a main influence factor. Hydraulic conductivities of 164 soil samples collected from boreholes and horizontal wells (average length: about 50 m) installed during well construction in the Anseong stream were drawn in two-dimensional map by the Kriging method and utilized in this study. Hydraulic conductivity analyses by Representative Elementary Count (REC) indicated the average hydraulic conductivity is similar to that of the pumping test when the number of samples reaches about 1,000, which correspond to 1,000 ㎡. Pumping test was also conducted at 1 pumping well and 13 observation wells to estimate hydraulic conductivities at each observation well. REC analysis indicated that the average value of hydraulic conductivity calculated from at least four observation wells is valid as a representative value. The overall result suggested that multiple observation wells or multiple pumping-observation well systems that are located within the range of horizontal wells should be utilized to properly estimate the representative hydraulic conductivity values and the yield of a radial collector well.

A Study on the Application of the Real-Time Simulator (실시간 모의시험기의 적용에 관한 연구)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.191-191
    • /
    • 2000
  • Hydraulic servo system is difficult to be made up and each component is very expensive, it takes long for actual system to make and test and it costs a high price. Because of these characteristics of hydraulic servo system, a real time simulator that could describe behavior of real system is highly demanded, without composing real hydraulic system. So, many studies have been (lone on these subjects and many simulators are developed with superiority. Since the nonlinearity of a hydraulic system common simulator have composed of many calculative times byusing DSP(Digital Signal processing) and have made it possible to find the situations of the system in real time, calculating hydraulic simulation and controller separately. In this study, we suggest real-time simulator that could describe real system without ordinary DSP card. This simulator is composed of 80196kc and personal computer. DSP card that has calculated complex numerical equation is supplanted by personal computer and 80196kc generates control signals independently out of the personal computer. In all process, personal computer is synchronized with one-board microprocessor within sampling time in the closed loop system. This makes it possible to be described in hydraulic servo system in real time. And to make a comparison between the result of the real-time simulator and a hydraulic servo system.

  • PDF

Dimensionless Discharge Formula of Parshall Flumes with Arbitrary Shape (임의형상 파샬플륨에 대한 무차원 유량공식 산정)

  • Kim, Sooyoung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1777-1783
    • /
    • 2013
  • Parshall flume is more practical one of hydraulic structures for measuring flowrate in open channels and also has more advantages when the magnitude of flow velocity is relatively lower or much more sediments are brought from upstream. International Organization for Standardization (ISO) has suggested the empirical formulas standardized by the sizes and dimensions of Parshall flume. However, the related studies using the numerical simulations and experiments are relatively rare. Therefore, in this study, it was examined whether the numerical simulation was adequacy for reproducing the hydraulic characteristics of Parshall flume as much as laboratory experiments by comparing the results from numerical simulations and empirical equation. And for arbitrary Parshall flume, that is unlisted in the ISO standards due to environmental conditions, constructional difficulties etc, thus, the hydraulic experiments should be conducted to obtain the empirical formulas for it, the results from numerical simulations were compared with those of laboratory experiments. Consequently, it was convinced that the numerical simulation about Parshall flume was simulated appropriately instead of experimental approach. And the dimensionless discharge equation of arbitrary ones was suggested using the results of numerical simulations, and the equation was validated by comparing with laboratory experimental results showing the maximum relative error of 2.3%. If the actual topography, the shape of inlet and submerged flow, which is excluded in this study, were carefully considered, it would be possible to supply a simple empirical discharge equation based on numerical results. Also, it can replete hard works for hydraulic experiment being error-prone with complex procedures to a minimum of economic effort.

A Prediction of Saturated Hydraulic Conductivity for Compacted Bentonite Buffer in a High-level Radioactive Waste Disposal System (고준위방사성폐기물 처분시스템의 압축 벤토나이트 완충재의 포화 수리전도도 추정)

  • Park, Seunghun;Yoon, Seok;Kwon, Sangki;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • A geological repository comprises a natural barrier and an engineered barrier system. Its design components consist of canisters, buffers, backfill, and near-field rock. Among the engineered barrier system components, bentonite buffers minimize the groundwater flow from near-field rock and prevent the release of nuclide. Investigation of the hydraulic conductivity of the buffer to groundwater flow is an important factor in the performance evaluation of the stability and integrity of the engineered barrier of the repository. In this study, saturated hydraulic conductivity tests were performed using Gyeongju bentonite at various dry densities and temperatures, and a hydraulic conductivity prediction model was developed through multiple regression analysis using the 120 result sets of hydraulic conductivity. The test results showed that the hydraulic conductivity tends to decrease as the dry density increases. In addition, the hydraulic conductivity increased with increasing temperature. The multiple regression analysis results showed that the coefficient of determination (R2) of the hydraulic conductivity prediction equation was as high as 0.93. The hydraulic conductivity prediction equation presented in this study could be used for the design of engineered barrier systems.

PARAMETER ESTIMATION PROBLEM FOR NONHYSTERETIC INFILTRATION IN SOIL

  • CHO, CHUNG-KI;KANG, SUNGKWON;KWON, YONGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 2000
  • Nonhysteretic infiltration in nonswelling soil is modelled by the Burgers equation under appropriate physical conditions. For this nonlinear partial differential equation the modal approximation scheme is used for estimating parameters such as soil water diffusivity and hydraulic conductivity. The parameter estimation convergence is proved, and numerical experiments are performed.

  • PDF

Analysis of the Hydraulic Head Affected by Stage of Tidal Rivers (감조구역에서 지하수 수두의 거동 해석)

  • 김민환;이재형
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1995
  • In the tidal compartment, the hydraulic head is affected by the stage of tidal rivers. For groundwater or construct works, head variation of groundwater should be considered in zone of this aquifer. A numerical analysis is performed which has an 1-dimemsional explicit finite difference scheme to show the head variation of groundwater with tidal stage and hydraulic conductivity, etc. The stability of the numerical scheme is validated by using the analytic solution. The head variation of groundwater is observed for various tidal amplititude and hydraulic conductivity, mean hydraulic gradient and pumping at any point. The range of influence corresponding to the parameters used in this study is about 60m. This value is not beyond a wave length (equation omitted). There was a pumping at a constant rate out of aquifers affected by tide and not affected by tide. Because pumping head in aquifer affected by tide is short, the expense of electric power is economized in this zone. These results are applicable to trace of contaminant transport, efficient operation of groundwater, and examination of the safety and stability of works in the tidal compartment.

  • PDF