DOI QR코드

DOI QR Code

A Prediction of Saturated Hydraulic Conductivity for Compacted Bentonite Buffer in a High-level Radioactive Waste Disposal System

고준위방사성폐기물 처분시스템의 압축 벤토나이트 완충재의 포화 수리전도도 추정

  • Received : 2020.01.21
  • Accepted : 2020.03.30
  • Published : 2020.06.30

Abstract

A geological repository comprises a natural barrier and an engineered barrier system. Its design components consist of canisters, buffers, backfill, and near-field rock. Among the engineered barrier system components, bentonite buffers minimize the groundwater flow from near-field rock and prevent the release of nuclide. Investigation of the hydraulic conductivity of the buffer to groundwater flow is an important factor in the performance evaluation of the stability and integrity of the engineered barrier of the repository. In this study, saturated hydraulic conductivity tests were performed using Gyeongju bentonite at various dry densities and temperatures, and a hydraulic conductivity prediction model was developed through multiple regression analysis using the 120 result sets of hydraulic conductivity. The test results showed that the hydraulic conductivity tends to decrease as the dry density increases. In addition, the hydraulic conductivity increased with increasing temperature. The multiple regression analysis results showed that the coefficient of determination (R2) of the hydraulic conductivity prediction equation was as high as 0.93. The hydraulic conductivity prediction equation presented in this study could be used for the design of engineered barrier systems.

고준위방사성폐기물의 처분은 고심도 암반내에 처분시스템을 구축하는 심층 처분방법이 고려된다. 심층 처분은 처분용기, 완충재, 뒷채움재, 근계암반의 설계 요소인 공학적방벽과 천연 방벽으로 구성된다. 공학적방벽 중에서 벤토나이트 완충재는 암반으로부터 유입되는 지하수 흐름을 최소화하고 핵종 유출을 저지하는 기능을 한다. 지하수 유입으로 인한 완충재의 수리전도도 특성 규명은 처분장 공학적방벽의 안정성 및 건전성에 대한 성능 평가에 있어 중요한 사안이다. 본 연구에서는 경주 벤토나이트를 이용하여 다양한 건조밀도와 온도 조건에 따라 포화 수리전도도 실험을 수행하였으며, 120개의 실험 결과를 다중 회귀 분석을 통해 수리전도도 추정 모델을 제시하였다. 실험 결과에서는 건조밀도가 커질수록 수리전도도가 감소하는 경향이 나타났다. 또한, 온도가 증가할수록 수리전도도가 증가하였다. 이러한 실험 결과들을 종합한 다중 회귀 분석 결과에서는 수리전도도 추정식의 결정계수(R2)가 0.93으로 높게 나타났다. 본 연구에서 제시된 수리전도도 추정식은 벤토나이트 완충재의 성능과 연관된 건조밀도와 온도의 영향을 고려하여 처분시스템의 공학적방벽 설계에 활용 될 것으로 판단된다.

Keywords

References

  1. J.S. Kim, S. Kwon, M. Sanchez, and G.C. Cho, "Geological storage of high level nuclear waste", KSCE J. Civ. Eng., 15, 721-737 (2011). https://doi.org/10.1007/s12205-011-0012-8
  2. S. Kwon, W.J. Cho, and J.O. Lee, "An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository", Nucl. Eng. Tech., 45, 41-52 (2013). https://doi.org/10.5516/NET.06.2012.015
  3. J.O. Lee, W.J. Cho, and S. Kwon, "Thermal-hydro-mechanical properties of reference bentonite buffer for a Korean HLW repository", Korea Tunnel. Under. Spac., 21, 264-273 (2011).
  4. J.O. Lee, H.J. Choi, and G.Y. Kim, "Numerical simulation studies on predicting the peak temperature in the buffer of an HLW repository", Int. J. Heat Mass Transf., 115, 192-204 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.039
  5. J.O. Lee, H.J. Choi, G.Y. Kim, and D.K. Cho, "Numerical analysis of the effect of gap-filling options on the maximum peak temperature of a buffer in an HLW repository", Prog. Nucl. Energy, 111, 138-149 (2019). https://doi.org/10.1016/j.pnucene.2018.11.007
  6. W.J. Cho, "Bentonite barrier material for radioactive waste disposal", Korea Atomic Energy Research Institute Report. KAERI/GP-535 (2019).
  7. S. Yoon, J.S. Jeon, G.Y. Kim, J.H. Seong, and M.H. Baik, "Specific heat capacity model for compacted bentonite buffer materials", Annals Nucl. Energy, 125, 18-25 (2019). https://doi.org/10.1016/j.anucene.2018.10.045
  8. H.J. Choi, J.Y. Lee, S.K. Kim, S.S. Kim, K.Y. Kim. J.T. Chung, M.S. Lee, J.W. Choi, and J.O. Lee, "Korean reference HLW disposal system", Korea Atomic Energy Research Institute Report, KAERI/TR-3563 (2008).
  9. J.Y. Lee, D.K. Cho, H.J. Choi, and J.W. Choi, "Concept of a Korean reference disposal system for spent fuels", J. Nucl. Sci. Technol., 44, 1563-1573 (2007).
  10. J.O. Lee, M.S. Lee, H.J. Choi, J. Y. Lee, and I.Y. Kim, "Establishment of the concept of buffer for an HLW repository: an approach", Korea Atomic Energy Research Institute Report, KAERI/TR-5824 (2014).
  11. JNC., "H12 project to establish technical basis for HLW disposal in Japan", Japan Nuclear Cycle Development Institute, JNC/TN1400-99-020 (1999).
  12. K.A. Daniels, J.F. Harrington, S.G. Zihms, and A.C. Wiseall, "Bentonite permeability at elevated temperature", Geosic., 7(3) (2017).
  13. W.M. Ye, M. Wan, B. Chen, and Y.G. Chen, "Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite", Environ. Earth Sci., 68, 281-288 (2013). https://doi.org/10.1007/s12665-012-1738-4
  14. S.G. Zihms, and J.F. Harrington, "Thermal cycling: impact on bentonite permeability", Mineral. Mag., 79, 1543-1550 (2015). https://doi.org/10.1180/minmag.2015.079.6.29
  15. W.J. Cho, J.O. Lee, and K.S. Chun, "The temperature effects on hydraulic conductivity on compacted bentonite", App. Clay Sci., 14, 47-58 (1999). https://doi.org/10.1016/S0169-1317(98)00047-7
  16. R. Lide, "Handbook of chemistry and physics", 75th edn., CRC press, New York (1995).
  17. M.V. Villar, R. Gomez-Espinal, and A. Lloret, "Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite", J. Roc. Mech. Geo. Eng., 2, 71-78 (2010).
  18. S. Yoon, W.H. Cho, C. Lee, and G.Y. Kim, "Thermal conductivity of Korean compacted bentonite buffer materials for a nuclear waste repository", Energies, 11, 2269 (2018). https://doi.org/10.3390/en11092269
  19. J.S. Kim, S. Yoon, W.J. Cho, Y.C. Choi, and G.Y. Kim, "A study on the manufacturing characteristics and field applicability of engineering-scale bentonite buffer in a high-level nuclear waste repository", J. Nucl. Fuel Cycle Waste Technol., 16(1), 123-136 (2018). https://doi.org/10.7733/jnfcwt.2018.16.1.123
  20. W.Z. Chen, Y.S. Ma, H.D. Yu, F.F. Li, X.L. Li, and X. Sillen, "Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay", J. Roc. Mech. Geotech. Eng., 9, 383-395 (2017). https://doi.org/10.1016/j.jrmge.2017.03.006
  21. W.J. Cho, J.S. Kim, S. Yoon, and G.Y. Kim, "Estimation of the hydraulic conductivity in compated bentonite at elevated temperature", Korea Atomic Energy Research Institute Report, KAREI/TR-7269 (2018).
  22. S. Yoon, G.Y. Kim, and M.H. Baik, "A prediction of thermal expansion coefficient for compacted bentonite buffer materials", J. Nucl. Fuel Cycle Waste Technol., 16(3), 339-346 (2018). https://doi.org/10.7733/jnfcwt.2018.16.3.339
  23. S. Yoon, M.S. Lee, G.Y. Kim, S.R. Lee, and M.J. Kim, "A prediction of thermal conductivity for compacted bentonite buffer in the high-level radioactive waste repository", J. Korean Geotech. Soc., 33(7), 55-64 (2017). https://doi.org/10.7843/kgs.2017.33.7.55
  24. Data solution Consulting Team, "SPPS statistics descriptive satistics and correlation analysis", SPSS Data Solution (2013).
  25. I.H. Lee, "Easy flow regression analysis", Hannarae Publishing Corporation (2014).
  26. S. Yoon, S.R. Lee, J.Y. Park, J.H. Seong, and H.B. Kang, "A prediction of entrainment growth for debrisflow hazard analysis using multiple regression analysis", J. Korean Soc. Hazard Mitig., 15(6), 353-360 (2015). https://doi.org/10.9798/KOSHAM.2015.15.6.353
  27. G.H. Go, S.R. Lee, S. Yoon, and H.B. Kang, "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects", Appl. Energy, 125, 165-178 (2014). https://doi.org/10.1016/j.apenergy.2014.03.059