• Title/Summary/Keyword: Hydraulic convergence

Search Result 138, Processing Time 0.022 seconds

Low-Voltage EM(Elasto-Magnetic) Sensing Technique for Tensile Force Management of PSC(Prestressed Concrete) Internal Tendon (PSC 내부 텐던의 긴장력 관리를 위한 저전압 EM 센싱 기법)

  • Park, Jihwan;Kim, Junkyeong;Eum, Ki-Young;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-92
    • /
    • 2019
  • In this paper, we have verified a low-voltage EM(elasto-magnetic) sensing technique for tensile force management of PSC(prestressed concrete) internal tendon in order to apply the technique to actual construction sites where stable power supply is difficult. From observation of past domestic and overseas PSC structural accident cases, it was found that PS tension is very important to maintain structural stability. In this paper, we have tried to measure the tensile force from a magnetic hysteresis curve through EM sensors according to voltage value by using relation between magnetostriction and stress of ferromagnetic material based on elastic-magnetic theory. For this purpose, EM sensor of double cylindrical coil type was fabricated and tensile force test equipment for PS tendon using hydraulic tensioning device was constructed. The experiment was conducted to confirm relationship between changes of permeability and tensile force from the measurement results of the maximum / minimum voltage amount. The change of magnetic hysteresis curve with magnitude of tensile force was also measured by reducing amount of voltage step by step. As a result, the slope of estimation equation in accordance with magnitude of magnetic field decreases with the voltage reduction. But it was confirmed a similar pattern of change of magnetic permeability for the magnetic hysteresis loop. So, in this study, it is considered that it is possible to manage the tensions of PSC internal tendon using EM sensing technique in low-voltage state.

Design of a Hydraulic Circuit for a Front Axle Suspension of an Agricultural Tractor via Hydraulic Simulation (유압 시뮬레이션을 이용한 트랙터 전방차축 현가장치 유압회로 설계)

  • Cho, Bong-Jin;Kim, Hak-Jin;Lee, Chang-Joo;Choi, Jin-Ha;Kim, Young-Joo
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.6-6
    • /
    • 2017
  • 농용트랙터의 전방차축 현가장치는 노면으로부터 발생하는 진동의 영향을 줄일 수 있기 때문에 트랙터의 대형화, 고속화의 추세에 맞춰서 승차감과 조향감을 향상시키는 데 중요한 역할을 한다. 전방차축의 현가장치는 트랙터의 차체 무게에 의한 부하가 크고, 또한 유압 펌프를 비롯한 유압시스템이 존재하기 때문에 유압식 회로로 구성하는 것이 바람직하다. 하지만, 현가장치의 유압회로를 개발하는데 있어서 실제 시스템을 구성하여 실제 실험을 통한 개발에는 비용과 시간이 많이 필요하다. 본 연구에서는 유압식 전방차축 현가장치에 필요한 유압회로부 개발을 위하여 시뮬레이션 기법과 요인시험 장치를 이용 적정 유압회로를 설계하고자 하였다. 이를 위하여 어큐뮬레이터, 가변 오리피스, 릴리프밸브, 체크밸브 등으로 구성된 유압 현가요인 시험 장치를 설계 제작하였으며, 현가 부품인 실린더 행정, 속도, 전달되는 힘을 측정하고, 유압 해석 프로그램인 SimulationX를 이용 구성된 유압회로 부품에 측정값을 입력하여 실제 조건과 유사한 동특성을 나타내는 전방차축 현가요인 시뮬레이션 모델을 개발하였다. 개발된 시뮬레이션 모델을 이용하여 실제 시험조건과 같은 가진 조건을 부여하여 개발 현가장치의 특성 값 변동에 따른 현가 성능을 구명하였다. 이를 위해 시뮬레이션 상에서 120 마력 트랙터 무게의 50% 수준에 해당하는 2,000 kg의 부하가 존재하는 상태에서 현가장치의 유/무에 따른, 감쇠 계수의 변화에 따른 스프링상 질량의 RMS 가속도를 비교하였다. 입력 가진으로는 1 Hz, 4 Hz, 8 Hz의 진동수에 각각 10 mm, 6.4 mm, 3.2 mm의 진폭을 인가하였다. 시뮬레이션 결과, 1 Hz에서는 현가장치가 있는 경우 최대 55.9% 개선되었고, 4 Hz에서는 최대 3.9 % 개선되었고, 8 Hz에서는 최대 61.4%까지 개선되었다. 이는 4 Hz의 경우에는 2,000 kg의 부하에 해당하는 고유 진동수 대역에 해당하기 때문에 그 감쇠 효과가 없는 것으로 나타났다. 하지만, 다른 주파수 대역에서는 현가장치가 효과적으로 작동하는 것을 나타내었다. 설계한 전방차축 현가 유압회로부를 시뮬레이션을 통하여 분석한 결과, RMS 가속도의 개선이 명확하게 이루어지는 것을 확인하였으며 입력 주파수 변화에 따라 감쇠특성도 나타나는 것을 확인하였다. 추후 연구에는 설계한 유압회로부와 관련 부품을 설계 제작하여 실제 트랙터에 장착 그 성능을 검증할 예정이며, 노면조건에 따라 감쇠성능을 유지하기 위한 반능동형 또는 적응형 현가장치 제어 기술을 적용하여 개선된 현가성능을 확보하기 위한 연구를 수행할 예정이다.

  • PDF

Assessment of Water Distribution and Irrigation Efficiency in Agricultural Reservoirs using SWMM Model (SWMM 모형을 이용한 농업용 저수지 용수분배 모의 및 관개효율 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • The management of agricultural water can be divided into management of agricultural infrastructure and operation to determine the timing and quantity of water supply. The target of water management is classified as water-supply facilities, such as reservoirs, irrigation water supply, sluice gate control, and farmland. In the case of agricultural drought, there is a need for water supply capacity in reservoirs and for drought assessment in paddy fields that receive water from reservoirs. Therefore, it is necessary to analyze the water supply amount from intake capacity to irrigation canal network. The analysis of the irrigation canal network should be considered for efficient operation and planning concerning optimized irrigation and water allocation. In this study, we applied a hydraulic analysis model for agricultural irrigation networks by adding the functions of irrigation canal network analysis using the SWMM (Storm Water Management Model) module and actual irrigation water supply log data from May to August during 2015-2019 years in Sinsong reservoir. The irrigation satisfaction of ponding depth in paddy fields was analyzed through the ratio of the number of days the target ponding depth was reached for each fields. This hydraulic model can assist with accurate irrigation scheduling based on its simulation results. The results of evaluating the irrigation efficiency of water supply can be used for efficient water distribution and management during the drought events.

Experimental Study of Changes in Channel Characteristics at Stream Confluences (하천합류점의 하도특성치 변화에 관한 실험적 연구)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.421-434
    • /
    • 1997
  • Flume experiments are conducted to describe channel adjustments at stream confluences and to examine some factors to which changes in channel characteristics are subject. There are different factors controlling channel size and shape; shereas the fomer is primarily controlled by water discharge alone, the latter including channel slope is influenced by sediment load as well as water discharge. The morphometric adjustments of confluent tributaries can be consequently classified into three types based upon changes in sediment concentration which are associated with the relative increasing rates of water discharge and sediment load at these sites. Flow is accelerated at stream confluences due to the convergence of confluent flows, causing an sharp increase in velocity. It restrains an increase in channel capacity, and furthers a decrease in channel slope, of a receiving stream. As a result, effects of slight increases in sediment concentration hardly appear on changes in channel characterisitics at stream confluences.

  • PDF

Robust control of a heave compensation system for offshore cranes considering the time-delay (시간 지연을 고려한 해상 크레인의 상하 동요 보상 시스템의 강인 제어)

  • Seong, Hyung-Seok;Choi, Hyeong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.105-110
    • /
    • 2017
  • This paper introduces a heave compensation system for offshore crane when it subjected to unexpected disturbances such as ocean waves, tidal currents or winds and their external force. The dynamic model consists of a crane which is considered to behave in the same manner as a rigid body, a hydraulic driven winch, an elastic rope and a payload. To keep the payload from moving upwards and downwards, PD(Proportional-Derivative) control was applied by using linearization. In order to achieve a better performance, the sliding mode control and the nonlinear generalized predictive control algorithm was applied according to the time-delay. As a result, the oscillating amplitude of the payload was reduced by the control algorithm. Considering the time-delay involved in the system to be one second, nonlinear generalized predictive controller with a robust controller was a suitable control algorithm for this heave compensation system because it made the position of te payload reach the desired position with the minimum error. This paper presented a control algorithm using the robust control and its simulation results.

Code Analysis of Effect of PHTS Pump Sealing Leakage during Station Blackout at PHWR Plants (중수로 원전 교류전원 완전상실 사고 시 일차측 열수송 펌프 밀봉 누설 영향에 대한 코드 분석)

  • YU, Seon Oh;CHO, Min Ki;LEE, Kyung Won;BAEK, Kyung Lok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This study aims to develop and advance the evaluation technology for assessing PHWR safety. For this purpose, the complete loss of AC power or station blackout (SBO) was selected as a target accident scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes the main features of the primary heat transport system with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was achieved successfully by running the present model to check out the stable convergence of the key parameters. Subsequently, through the SBO transient analyses two cases with and without the coolant leakage via the PHTS pumps were simulated and the behaviors of the major parameters were compared. The sensitivity analysis on the amount of the coolant leakage by varying its flow area was also performed to investigate the effect on the system responses. It is expected that the results of the present study will contribute to upgrading the evaluation technology of the detailed thermal hydraulic analysis on the SBO transient of the operating PHWRs.

CONSEQUENCE OF BACKWARD EULER AND CRANK-NICOLSOM TECHNIQUES IN THE FINITE ELEMENT MODEL FOR THE NUMERICAL SOLUTION OF VARIABLY SATURATED FLOW PROBLEMS

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.197-215
    • /
    • 2015
  • Modeling water flow in variably saturated, porous media is important in many branches of science and engineering. Highly nonlinear relationships between water content and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing numerical problems. These include poor efficiency when modeling water infiltration into very dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional finite element formulation is developed for the numerical simulation of variably saturated flow systems. First order backward Euler implicit and second order Crank-Nicolson time discretization schemes are adopted as a solution strategy in this formulation based on Picard and Newton iterative techniques. Five examples are used to investigate the numerical performance of two approaches and the different factors are highlighted that can affect their convergence and efficiency. The first test case deals with sharp moisture front that infiltrates into the soil column. It shows the capability of providing a mass-conservative behavior. Saturated conditions are not developed in the second test case. Involving of dry initial condition and steep wetting front are the main numerical complexity of the third test example. Fourth test case is a rapid infiltration of water from the surface, followed by a period of redistribution of the water due to the dynamic boundary condition. The last one-dimensional test case involves flow into a layered soil with variable initial conditions. The numerical results indicate that the Crank-Nicolson scheme is inefficient compared to fully implicit backward Euler scheme for the layered soil problem but offers same accuracy for the other homogeneous soil cases.

Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks (원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발)

  • Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray computed tomography (CT) is very useful for the quantitative evaluation of internal structures, particularly defects in rock samples, such as pores and fractures. In situ CT allows 3D imaging of a sample subjected to various external treatments such as loading and therefore enables observation of changes that occur during the loading process. We reviewed state-of-the-art of in situ CT applications for geomaterials. Two triaxial cells made using relatively low density but high strength materials were developed aimed at in situ CT scanning during hydro-mechanical laboratory testing of rocks. Preliminary results for in situ CT imaging of granite and sandstone samples with diameters ranging from 25 mm to 50 mm show a resolution range of 34~105 ㎛ per pixel pitch, indicating the feasibility of in situ CT observations for internal structural changes in rocks at the micrometer scale. Potassium iodide solution was found to improve the image contrast, and can be used as an injection fluid for hydro-mechanical testing combined with in situ CT scanning.

Simplified Analysis of Agricultural Water Network Model Using SWMM - A Case Study of Mandae Reservoir - (SWMM을 활용한 농업용수 네트워크 모형 단순화 분석 - 만대 저수지 사례를 중심으로 -)

  • An, Sung-Soo;Bang, Na-Kyoung;Lee, Jong-Seo;Bang, Sung-Soo;Nam, Won-Ho;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • This study established a water supply network based on the operation case of Mandae Reservoir in Yanggu-gun, Gangwon-do, to analyze the efficient distribution and management of agricultural water supplied from the reservoir to irrigation areas using the hydraulic analysis model SWMM. In order to construct a model to analyze the water canal network, network conditions needs to be simplified, and in particular, excessive detail or simplification of the irrigation area can lead to errors in the analysis results. Therefore, the effect of the water canal network model was analyzed by simulating the appropriate simplification process step by step. The results of simplifying the actual block shape of the analysis target area using SWMM showed that there was no significant difference in the results even if 7 lots were simplified to 2. Also, it was found that the construction and analysis of a simplified network model were reliable when the excess quantity was 2% or more compared to the required quantity for each case of analysis of the paddy field.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.