• Title/Summary/Keyword: Hydraulic breaker system

Search Result 18, Processing Time 0.027 seconds

Development the Test System of Impact Energy Using the Pressure Variation in Closed Vessel for Hydraulic Breaker (밀폐용기내 압력변화를 이용한 유압식 브레이커의 타격에너지 시험법 개발)

  • Lee, Geun-Ho;Lee, Yong-Beom;Lee, Gi-Yong
    • 연구논문집
    • /
    • s.32
    • /
    • pp.45-53
    • /
    • 2002
  • Hydraulic breaker attached excavator generally used for the destroying and disassembling of buildings, crashing road pavement, breaking rocks at quarry and etc. The developed breaker are determined their own destructive force and number of impact by the input hydraulic flow rate and pressure than the operating conditions, In this study, the characteristics of pressure variation in closed vessel is invested for testing the impact energy of hydraulic breaker. To test the impact energy, the test system is designed as a mechanism consisted with a hydraulic cylinder, main base, pressure sensor, LVDT, data acquisition system and etc.. The developed test system is applied to measure the impact energy for hydraulic breaker. The proposed testing method could be applied for conventional impact test and the control system evaluation for hydraulic breakers.

  • PDF

The Development of an Analysis Tool and the Performance Analysis of a Hydraulic Breaker System (유압 브레이커의 해석용 TOOL 개발 및 성능 분석)

  • Lee, Youngkyu;Sung, Wonjoon;Song, Changseop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.189-196
    • /
    • 2000
  • In this study, the hydraulic breaker system was analyzed and the analysis tool using GUI was developed. The analysis on the system with the accumulator was included. from the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the method to improve the performance of the hydraulic breaker system was presented. The analysis tool will help a man without special knowledge about programming analyzse the hydraulic breaker system. The result of this study will help improve the hydraulic breaker system in sight of "Blow energy" and "Blows per minute".ws per minute".uot;.

  • PDF

A Study on the Performance Improvement of a High Efficiency Hydraulic Breake (고효율 유압 브레이커의 성능 향상을 위한 연구)

  • 이승현;한창수;송창섭
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.59-64
    • /
    • 2003
  • In this study, the hydraulic breaker system was analyzed and the analysis tool using GUI was developed. The analysis on the system with the accumulator was included. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the method to improve the performance of the hydraulic breaker system was presented. The analysis tool will help a man without special knowledge about programming analyze the hydraulic breaker system. The result of this study will help improve the hydraulic breaker system in sight of Blow energy and Blows per minute.

Development of the Hydraulic Pressure Transducer System for Testing the Impact Energy of Hydraulic Breaker (유압 브레이커의 타격 에너지 측정을 위한 유압 변환장치 개발)

  • 이근호;이용범;정동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • Hydraulic breaker of excavator has been used for the destruction and disassembling of buildings, crashing road pavement, breaking rocks at quaky and etc. The performance of breakers is evaluated their own destructive force and the number of impact by input hydraulic flow rate and pressure on the operating conditions. Because hydraulic breakers generate high impact energy, the accurate measurement of the impact force has been facing a technical challenge. In this study, the hydraulic pressure transducer system was developed based on the characteristics of pressure variation in closed vessel fur testing the impact energy. The hydraulic pressure transducer system is consisted with a hydraulic cylinder, main base, pressure & temperature sensors, LVDT, data acquisition system and etc. The developed hydraulic pressure transducer system was applied to measure the impact energy for hydraulic breaker. The measured impact force was 438.8 kgf.m within the designed impact force bounds. The developed hydraulic pressure transducer system as a simple tester could be applied to measure the impact force and the number of impact.

Measurement of Breaker Noise by Using Breaker Noise Measurement System (브레이커 소음측정시스템을 활용한 소음의 측정 및 평가)

  • Lee, Jae-Won;Kang, Dae-Joon;Gu, J.H.;Park, H.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1173-1176
    • /
    • 2007
  • The breaker noise is one of the main noise sources of construction site. It is very important to assess and measure the breaker noise accurately, because the noise labelling will be in effect January 2008 in Korea. Therefore, It is necessary to measure the sound power level of breakers and use a appropriate test method in accordance with international standard. In this study, we measure the sound power level of breakers by using the breaker noise measurement system. This system makes it possible to measure the breaker noise more accurately than to measure the noise of that attached with excavator, because this system can control main factors affecting breaker noise such as hydraulic input power, hydraulic supply pressure, breaker inlet oil flow and so on.

  • PDF

A Study on the Reducing the Return Line Pressure Fluctuation of the Hydraulic Breaker System (유압 브레이커의 리턴 라인의 압력 맥동 감소에 관한 연구)

  • 성원준;노태봉;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.70-76
    • /
    • 2003
  • In this study, the hydraulic breaker system was analyzed and simulated using. The simulation result was certified comparing with the experimental result. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the method to reduce the return line pressure fluctuation was presented.

Damping Device for Hydraulic Breaker: Impact and Noise Reduction (유압 브레이커 메인바디의 충격 및 소음 저감을 위한 완충 장치에 대한 연구)

  • Cho, Byung Jin;Han, Hoon Hee;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.113-122
    • /
    • 2018
  • A hydraulic breaker is an attachment of an excavator, and it crushes stones. Recently, research to reduce the impact and noise of breakers are ongoing. In this paper, a method to improve the upper, lower, and side dampers, which act as insulation for the attenuation of vibration during breaker operation, is studied through testing and simulation. To obtain the nonlinear material constants required for the simulation, the biaxial tensile test was performed with urethane, which is a material used for dampers. The existing parts and the improved parts were compared and evaluated using the LS-DYNA program. As a result, 50% of the equivalent stress was reduced in the bracket body of the hydraulic breaker, and the equivalent stress of the side damper was also decreased. We verified that the fatigue conditions were satisfied by performing a fatigue analysis.

Performance Analysis of Urethane Packing in the Hydraulic Breaker by a Finite Element Method (유한요소해석을 이용한 유압브레이커용 우레탄 패킹의 성능분석)

  • Shin, Hyun Woo;Hong, Jong Woo;Choi, Yi Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.

A Study on Manually and Continuously Variable Impact Force Control Device Development for Hydraulic Breakers (유압브레이커의 수동 무단 타격력 제어기구 개발에 대한 연구)

  • Kang, Young Ky;Jang, Ju Seop
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.46-53
    • /
    • 2020
  • In this paper, the development of a manually and continuously variable impact force control mechanism for hydraulic breakers was studied. Generally, a hydraulic breaker has one or two piston strokes. Hydraulic breakers, which have two strokes, have two valve-switching ports and make short and long piston strokes. The piston stroke valve controls the piston stroke by opening and closing a short stroke-switching port. The short piston stroke mode is used to break soft rock, concrete, or asphalt. This stroke control valve system is not popular for small hydraulic breakers mounted on 1 to 14-ton excavators. To preserve the carrier-like excavator, proper breaking force is needed, and it can be easily controlled by multiple piston stroke control valves. The easiest way to control these breakers is to use several switching ports and valves but they are not easy to install in small hydraulic breakers and are expensive. To use only one switching port and valve, a method can be used to change the open area of the switching port to delay valve switching. This method provides multiple piston strokes.