• Title/Summary/Keyword: Hydraulic Systems

Search Result 1,257, Processing Time 0.03 seconds

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Independent Metering Valve: A Review of Advances in Hydraulic Machinery

  • Nguyen, Thanh Ha;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.54-71
    • /
    • 2020
  • In light of the environmental challenges, energy-saving strategies are currently under investigation in the construction industry. This paper focuses on the energy-saving method used in the hydraulic system based on independent metering (IM) technologies, which can overcome the lost energy at the main control valve of the conventional electrohydraulic servo system. By scientifically arranging the proportional valves, the IM system can individually control the flow rate of the inlet and the outlet ports of the actuators. In addition, the IMV system can be used to effectively regenerate energy under different operating modes, thereby saving more energy than conventional hydraulic systems. Therefore, the IMV system has a great potential to improve the energy efficiency of hydraulic machinery. The overall IMV system, including the configuration, proportional valve, operation mode, and the control strategy is introduced via state-of-the-art hydraulic technologies. Finally, the challenges of IM systems are discussed to provide researchers with directions for future development.

Pressure Ripple Reduction of Hydraulic Pump-Motor in HST (HST용 유압폄프.모터의 압력맥동 저감 특성)

    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.117-123
    • /
    • 2003
  • This paper deals with pressure ripple and noise reduction characteristics for a hydrostatic transmission(HST) consisting of a variable axial piston pump connected in an open loop to a fixed displacement axial piston motor. Pressure ripples in HST is major source of vibration, which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube type hydraulic filter proposes to absorb pressure ripples with the high frequencies components to achieve better noise attenuation in HST. The basic principle tube is applied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimently confirmed that a hydraulic filter is absorbed to be about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and here, should provide a means of designing a quieter HST.

  • PDF

Controller design of heavy load driving system (대부하 구동시스템의 제어기 설계)

  • 윤강섭;안태영;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.730-735
    • /
    • 1992
  • In this study, heavy loads driving servo control systems, which are composed of electro-hydraulic servo-valve, hydraulic motor/cylinder, gear box and link mechanism, are investigated for implemention. To predict the performances of the systems, modelling and simulation with some nonlinearities are carried out. Simulation results are compared with experimental results.

  • PDF

Case studies for solving the Saint-Venant equations using the method of characteristics: pipeline hydraulic transients and discharge propagation

  • Barros, Regina Mambeli;Filho, Geraldo Lucio Tiago;dos Santos, Ivan Felipe Silva;da Silva, Fernando das Gracas Braga
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • This study aims to present a hydraulic transitory study as MOC applications for solving the Saint-Venant equations in two case studies: 1) in a penstock of a small hydropower system as a simple pipeline in the case of valve-closure in the downstream boundary with a reservoir in the upstream boundary; and 2) for discharge propagation into a channel by velocity and depth of the flow channel along space evaluation. The proposed methodology by Chaudry [5] concerning the development of hydrodynamic models was used. The obtained results for first and second case study has been confirmed that MOC numerical approach is useful for several engineering purposes, including cases of hydraulic transients and discharge propagation in hydraulic systems.

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

Determination of No-Failure Test Times for the Life Test of Hydraulic System Components (유압시스템 구성품의 수명시험을 위한 무고장 시험시간의 산출)

  • Lee, S.R.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 2006
  • It is very important for the manufacturers to predict the life of hydraulic system components according to the results of life tests. Since it takes too much time to test the hydraulic system components until failure, the no-failure test method is applied for the life test of them. If the shape parameter of Weibull distribution, the number of samples, the confidence level, and the assurance life are given, the no-failure test times of hydraulic system components can be calculated by given equation. Here, the procedures to obtain the no-failure test times of the hydraulic system components such as hydraulic motors and pumps, hydraulic cylinders, hydraulic valves, hydraulic accumulators, hydraulic hoses, and hydraulic filters are described briefly.

  • PDF

Error Evaluation of the Linearized Equation of Servo Valve in Hydraulic Control Systems (유압 서보 제어계에서 밸브 선형화 방정식의 오차 평가)

  • Kim, Tae-Hyung;Lee, Ill-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.501-506
    • /
    • 2001
  • In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. In this study, the authors estimate computational errors in the process of applying the existing linearized equation stated above. For evaluating the computational accuracy in practical applications of the linearized equations, dynamic behaviors of hydraulic control systems are investigated through simulations with several kinds of representative hydraulic systems and the linearized equations suggested in this study.

  • PDF

Design Parameters Considering Friction Characteristics for Rope Brake System of Elevator (로프 브레이크 시스템에서 마찰 특성을 고려한 설계 변수특성 연구)

  • Jang, Joosup
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • In this study, hydraulic systems of the rope brake system of an elevator are modeled to evaluate design parameters that consider friction characteristics such as cylinder pressure, piston displacement, and flow rate. Hydraulic systems of the rope brake system are analyzed using the commercial program AMESim. Analysis modeling data are compared with data obtained from experiments, and the analysis modeling results are found to be reliable. The analysis results will be used to design hydraulic systems of the rope brake system of elevators.

Hydraulic Evaluation and Performance of On-Site Sanitation Systems in Central Thailand

  • Koottatep, Thammarat;Eamrat, Rawintra;Pussayanavin, Tatchai;Polprasert, Chongrak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-274
    • /
    • 2014
  • On-site sanitation systems are typically installed to treat grey and toilet wastewaters in areas without sewer and centralized treatment systems. It is well known that, due to inappropriate design and operation, treatment performance of these systems in developing countries is not satisfactory in the removal of pathogens and organic matters. This research aimed to investigate the hydraulic conditions occurring in some on-site sanitation systems and the effects of hydraulic retention times (HRTs) on the system performance. The experiments were conducted with a laboratory-scale septic tank (40L in size) and an actual septic tank (600L in size), to test the hydraulic conditions by using tracer study with HRTs varying at 12, 24 and 48 hr. The experimental results showed the dispersion numbers to be in the range of 0.017-0.320 and the short-circuit ratios in the range of 0.014-0.031, indicating the reactors having a high level of sort-circuiting and approaching complete-mix conditions. The removal efficiency of $BOD_5$ was found to be 67% and the $k_{30}$ values for $BOD_5$ was $2.04day^{-1}$. A modified complete-mix model based on the relationship between $BOD_5$ removal efficiencies and HRTs was developed and validated with actual-scale septic tank data having a correlation coefficient ($R^2$) of 0.90. Therefore, to better protect our environment and minimizing health risks, new generation toilets should be developed that could minimize short-circuiting and improving treatment performance.