• Title/Summary/Keyword: Hydraulic Expansion

Search Result 118, Processing Time 0.025 seconds

Frequency Range Expansion of Pneumatic Exciter by Using Dual-chamber (이중챔버를 이용한 공압가진기의 주파수 범위 확장)

  • Park, Young-Woo;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.909-919
    • /
    • 2013
  • Pneumatic exciters can be good replacements of electrodynamic, piezoelectric and hydraulic exciters owing to simple structure and large exciting force. One problem to be solved is a slow response caused by compressibility of air. Desirable frequency response characteristics of exciter are constant magnitude and zero degree phase, because users want no time delay between input signal and output force. For this reason, frequency range of pneumatic exciters is limited about 0~1 Hz. Therefore, expansion of frequency range is an important issue when designing the pneumatic exciter. In this paper, the pneumatic exciter which has same structure with active pneumatic isolator is dealt with. The dynamic characteristics are presented, and its limitation of expanding frequency range is shown based on analytical studies. Then the pneumatic exciter with dual-chamber is suggested to overcome this problem. Based on simulation study, a design method is presented.

Effects of Double Volute on Performance of A Centrifugal Pump (원심펌프의 성능에 대한 더블 볼류트의 영향)

  • Shim, Hyeon-Seok;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • In this study, a parametric study of a centrifugal pump with double volute has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport model was selected as turbulence closure through turbulence model test. The finite volume method and unstructured grid system were used for the numerical analysis. The optimal grid system in the computational domain was determined through a grid dependency test. The expansion coefficient, circumferential and radial starting positions and length of divider were selected as the geometric parameters to be tested. And, the hydraulic efficiency and the radial thrust coefficient were considered as performance parameters. It was found that the radial thrust and hydrualic efficiency are more sensitive to the expansion angle and circumferential starting position of the divider than the other geometrical parameters.

Steady Characteristic Change of Hydraulic Control Orifice according to Opening and Configuration Parameters (수력제어용 오리피스의 개도 및 형상 변수에 따른 정상저항 특성의 변화)

  • Kim, Sang-Min;Kim, Geon-Woong;Ko, Tae-Ho;Kim, Hyung-Min;Yoon, Woo-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.329-334
    • /
    • 2009
  • The Study of steady performance of orifice must be precede before study of dynamic characteristics with configuration change. So, orifice performance with change of diameter ratio, thickness, expansion and angle predicted by CFD. The analysis algorithm is SIMPLEC. And PRESTO, QUICK scheme is used for dicretization. The $k-{\omega}$ STS turbulent model also used. The discharge coefficient is rapidly increased with increasing of diameter ratio and slowly decreased after rapidly increasing with orifice thicken. In case of expansion angle, the discharge coefficient is the smallest at $45^{\circ}$ of the angle.

  • PDF

Numerical Analysis of Pulsating Heat Pipe Based on Separated Flow Model

  • Kim Jong-Soo;Im Yong-Bin;Bui Ngoc Hung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1790-1800
    • /
    • 2005
  • The examination on the operating mechanism of a pulsating heat pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased.

An Identification of the Hydraulic Motion Simulator Using Modified Signal Compression Method and Its Application

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.133-136
    • /
    • 1999
  • Many researches on the identification of a system have been carried out using a least square method, an adaptive filter, and so on. However, it is difficult to apply these methods in a nonlinear system. In the case of a nonlinear system, it is known that the signal compression method is able to estimate uncertain parameters of linear element in a nonlinear system because it is able to separate linear element and nonlinear element in a nonlinear system. However, the signal compression method cannot be applied to a motion simulator because actuators of the simulator is single-rod cylinders which includes expansion and compression dynamic properties. Therefore, this paper proposes a modified signal compression method which is able to estimate uncertain parameters of the motion simulator dynamics. The dynamic properties of this system are identified by separating expansion and compression properties when applying the signal compression method. And then, the identified parameters are applied to design a sliding mode controller for the simulator. The performance of the designed sliding mode controller is evaluated experimentally.

  • PDF

Flow Characteristics in a Microchannel Fabricated on a Silicon Wafer (실리콘 웨이퍼 상에 제작된 미소 유로에서의 유동특성)

  • Kim, Hyeong-U;Won, Chan-Sik;Jeong, Si-Yeong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1844-1852
    • /
    • 2001
  • Recent developments in microfluidic devices based on microelectromechanical systems (MEMS) technique find many practical applications, which include electronic chip cooling devices, power MEMS devices, micro sensors, and bio-medical devices among others. For the design of such micro devices, flows characteristics inside a microchannel have to be clarified which exhibit somewhat different characteristics compared to conventional flows in a macrochannel. In the present study microchannels of various hydraulic diameters are fabricated on a silicon wafer to study the pressure drop characteristics. The effect of abrupt contraction and expansion is also studied. It is found from the results that the friction factor in a straight microchannel is about 15% higher than that in a conventional macrochannel, and the loss coefficients in abrupt expansion and contraction are about 10% higher than that obtained through conventional flow analysis.

The Synthesis and Hydraulic properties of Calcium Sulfo Aluminate(CSA) derived from Secondary Refining Slag. (제강 2차 정련 슬래그를 재활용한 칼슘설포알루미네이트(CSA) 합성 및 수화 특성)

  • Seo, Chang Woo;Kim, Seon-Hyo;Ko, Sang Jin;Kim, Sang Hyun;Jo, Kyu Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.437-442
    • /
    • 2008
  • The synthesis and hydration of Calcium Sulfo Aluminate[$3CaO{\cdot}3Al_2O_3{\cdot}CaSO_4(C_4A_3{\overline{S}})$, CSA cement utilizing secondary steelmaking refining slags is studied for recycling the discarded steel plant wastes to meet the environmental requrations imposed on the steel industry. Raw materials of secondary refining slag, lime sludge, gypsum and bauxite were prepared to be sintered at $1,250^{\circ}C$. The sintered samples were hydrated for 1, 3 and 7 days to evaluate the mineralogical and physico-mechanical properties. The hydration products evaluated with the aid of SEM and XRD analyses confirmed the formation and the continuing growth of ettringite phase with the further hydration times, which plays a role in developing the early strength and the expansion properties of cements. The physico-mechanical properties of hydrated CSA products employing the recycled steelmaking refining slags determined in terms of compressive strength and linear expansion of hydrated products are found to be superior to those of the Ordinary Portland Cement(OPC) or the other commercial CSA cements.

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.