• Title/Summary/Keyword: Hydraulic Cylinder

Search Result 473, Processing Time 0.027 seconds

An analytical expression for a dynamic optimal design of the stewart platform (스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현)

  • Kwon, Byung-Hee;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF

Optimal controller design for active suspension system with asymmetric hydraulic cylinder using feedback linearization (비대칭형 유압실린더를 사용한 능동현가 시스템에서의 Feedback Linearization을 이용한 최적 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.644-647
    • /
    • 1997
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

Future Vision through NL Tensioner Technology Development and Domestic Equipment Fabrication (NL Tensioner 기술개발 및 기자재 국산화를 통한 향후 비젼)

  • Lee, Ki-Yeol;Choi, Hae-Soo;Lee, Eun-Jin;Yoon, Tae-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • The following Technology Report was written with respect to recent offshore technology development. This report was prepared with the purpose of suggesting recent offshore technology and upcoming visions by describing the principles of an offshore drilling operation, the NL Tensioner Cylinder Package R & D, and the general technology related to three offshore patent areas, as major contents.

A study on the design and characteristics of kinematics of 6 degree-of-freedom manipulators (6자유도 조작장치의 설계와 기구학적 특성에 관한 연구)

  • Kim, Jeoung-Tae;Kim, Moon-saeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.467-475
    • /
    • 1998
  • The Six Degree-of-Freedom manipulators are generally operated by linear actuators which are hydraulic cylinder, pneumatic cylinder, ball-screw. But these actuators are not adequate to have a wide work-space, and furthermore some of them have a self-locking property. Therfore, we have designed a new manipulator which fully overcomes these demerits. The new manipulating system consists of 6 DC-motors to generate operation forces and 6 position transducers to feedback displacement signals. This paper presents an overview of the design and characteristics of 6 Degree-of-Freedom force feedback manipulators for vitual reality implementation. we can operate Six Degree-of-Freedom manipulator with six motors and six potentiometers.

Position Control of an ER Valve-Cylinder System (ER 밸브-실린더 시스템의 위치 제어)

  • 이효정;정재민;박재석;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.402-405
    • /
    • 1993
  • This paper presents design.dynamic modeling and control issues of a novel type of an ER valve-cylinder system incorporating with an electro-rheological(ER) fluid. The yield stress of the ER fluid to be employed to the proposed system is evaluated as a function of applied electric fields. The design and manufacturing process of the ER valve which features fast system response and simple mechanism are undertaken on the basis of model parameters. The governing equation for the hydraulic and pneumatic model is constructed by incorporation with the field-dependent Bingham behavior of the ER fluid. An effective neuro controller is proposed to realize an accurate position control.

  • PDF

Development of Simple Simulation by Changing the Stroke of Cylinder for a Oscillation (모의실험장치에서의 기계적인 동요에 대한 단순모사 장치개발)

  • Seol, Sang-Seok;Chung, Won-Jee;Jung, Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • Equipments to influence by external force have to take effect mechanical oscillation. These equipments regardless of the movement on the external force such as roll, pitch and heave etc, worked to keep the height of tote are required for activeness and needed a device as equipment's fluctuation for rapidly compensation. Because the actual development of these devices is difficult to cost-effectively, we were developed to compensation simulator scaled down 1/50. In this paper, we were studying kinematic characteristics, designed the simulator to grasp the point and manufactured. This paper was analyzed for confirming the superiority of compensation simulator and set up 50 ton crane in practice.

The Study on permeability enhancement in smear zone using electro-osmotic pressure (전기 삼투압을 이용한 교란영역의 투수성 개선에 관한 연구)

  • Ahn, Byung-Wook;Noh, Hee-Jeon;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.435-441
    • /
    • 2008
  • More time is required for consolidating soft clay when its hydraulic conductivity around the vertical drains is reduced by soil disturbance. One of the methods to be proposed to solve such problem is the electro-osmotic flow application. This study presents the experimental results of model tests using a modified oedometer and a large-scale cylinder with a sand drain. Results show that the development of negative excessive pore water pressure due to the DC electrical field in saturated clay can be transformed to additional loads causing more consolidation settlement.

  • PDF

Design of Assistive Wearable System for Walking (보행 보조 웨어러블 시스템 설계)

  • Choi, Seong-Dae;Lee, Sang-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.111-116
    • /
    • 2019
  • With the recent acceleration of industrial technologies and active research, wearable robot technologies have been applied to various fields. To study the utility of wearable robots, basic research on kinetic mechanisms of the human body, bio-signal analysis, and system control are essential. In this study, we investigated the basic structure of a wearable system and the operating principles of a driving mechanism. The control system and supporting structure, which comprise the driving mechanism, were designed and manufactured. Motion and load analyses were performed simultaneously for the design of the kinematic drive, and the driving mechanism was constructed by analyzing walking motion. The operating conditions of the cylinder were verified by stride via driving experiments. Further, the accuracy and responsiveness of the system were confirmed by comparison with actual motion, and the system safety was validated by applying loads.

The Concept of a Gravity Engine and Energy Performance for Tidal and Hydro-Power

  • Lee, Jae-Young
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2000
  • This paper is to propose the concept and performance of a gravity engine which could extract energy from sea or river as a clean. renewable and sustainable power. the vertical motion of the buoyancy cylinder of the present gravity engine is converted to the mechanical work directly without any hydraulic loss. The positive net energy between the imposed and harnessed one is achieved by the specific operating procedure. The detailed derivation of the energy balance is made based on the first principle of thermodynamics. The calculation demonstrates that the present gravity engine could harness more energy than the conventional turbine system in the same basin area because of the relatively high efficiency in the energy conversion system and added mass from the buoyancy cylinder.

  • PDF

Adaptive Control Based Velocity and Pressure Control for Injection Molding Cylinder (사출성형 실린더의 적응제어 방식 속도 및 압력제)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with the issue of model reference adaptive control strategy to control the injection molding machine. Prior to controller design, a pair of transfer functions are derived for the injection and dwelling process based on mathematical models of components. As external disturbances to examine the robustness of the proposed controller, nozzle clogging and contraction of molded objects are considered and realized by proportional valve. The overall simulation system, consisting of hydraulic components, controller and sensors, is implemented using the components of commercial software SimulationX. The simulation results confirm the proposed scheme's efficiency and robustness.