• Title/Summary/Keyword: Hydraulic Cylinder

Search Result 473, Processing Time 0.027 seconds

FEM Analysis on the Strength Safety of a LPG Cylinder (LPG용기의 강도 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.55-59
    • /
    • 2007
  • This paper presents the strength safety of a LPG cylinder, which is fabricated by a steel sheet forming and a welding technology. The strength safety of a cylinder is guaranteed by analyzing a stress distribution of a LPG cylinder structure using a finite element method. The FEM computed results indicate that the hydraulic test gas pressure of $31kg/cm^2$ generates a concentrated local stress near the upper round end plate, which exceeds the yield strength of a LPG cylinder. Thus, the current hydraulic test pressure may be rechecked and revised because this pressure increases the fatigue failure and decreases the lift of the pressure vessel. The normal operation and sealing gas pressures such as $9kg/cm^2\;and\;18.6kg/cm^2$ are relatively safe for a steel LPG cylinder.

  • PDF

The Effect of Impact Absorbing System with 2 DOF Deformation According to the Variation of Cylinder Wall on Damping Coefficient (실린더 벽면 변화가 2자유도계 충격흡수장치의 감쇠계수에 미치는 영향)

  • Han, Geun-Jo;Ahn, Chan-Woo;Ahn, Sung-Chan;Shim, Jae-Joon;Kim, Sung-Youn
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.101-105
    • /
    • 2002
  • Many malfunction take place in container crane spreader due to impact. So we designed a 2 DOF hydraulic impact absorbing equipment to absorb the impact and we studied the change of damping coefficient with respect to the variation of dimensions of oil-Cylinder wail. When we design the dimension of hydraulic cylinder wall considering the displacement on the wall, the value of it over 20m didn't affect the damping coefficient.

SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling (원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어)

  • Cha, Keum-Gang;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump (사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석)

  • Kim Sung-Hun;Hong Yeh-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

Unknown-Parameter Estimation of Electric-Hydraulic Servo Cylinder Based on Measurements (측정 데이터 기반 전기-유압 서보 실린더의 미지 변수 추정)

  • Seung, Ji Hoon;Yoo, Sung Goo;Seul, Nam O;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Electric-hydraulic sever cylinders are used in many offshore applications such as wind energy farms, solar farms and plants. Jack-up barges are often used for these offshore system operations. Jack-up barge control is up/down by hydraulic cylinder position control. Working in harsh environments can lead to changes in internal parameters. This nonlinearity makes precise control difficult. In order to overcome the problems, we proposed a method of unknown-parameter estimation algorithm based on measurements obtained by system. In this paper, we employee Unscented Kalman filter (UKF) to estimate states and unknown-parameter from augmented nonlinear equation. Performance of estimation results is verified in simulation on an environments of Matlab. The estimation results of the state and unknown-parameter show that the estimation error of unknown-parameter is reduced according to decreasing the state estimation error.

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

A Study on the Development of Hydraulic Cylinder with Magnetic Sensors for Detecting Absolute and Precise Position (자기센서를 이용한 절대위치 검출형 고정도 유압 실린더 개발에 관한 연구)

  • 박민규;이민철;양순용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.156-160
    • /
    • 1997
  • This paper introdues the development of hydraulic cylinder with magnetic sensor detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position witha little displacement by using algorithm for recognizing datum points, 1/4 divider algorithm and high precision algorithm improved position precision and robustness to noise etc. The solenoid valve and PWM control using saw-toothed wave are used for absolute position control of cylinder, respectively

  • PDF

Motion Control of Servo Cylinder Using Neural Network (신경회로망을 이용한 서보 실린더의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.

Theoretical Analysis of Sealless Piston for Hydraulic Cylinders (시일이 없는 유압 실린더용 피스톤의 이론해석)

  • Park, T.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a theoretical analysis is carried out to study the lubrication characteristics of sealless piston for hydraulic cylinders. The analytical pressure distributions are obtained solving one-dimensional Reynolds equation with partially tapered moving piston. Nearly analytical expressions for lateral forces acting on the piston and leakage flow rate through the clearance are also presented. Using the analytical expressions, the influence of design parameters on lubrication characteristics can be easily evaluated without numerical analysis. Composite-shaped piston which minimizes the leakage flow rate is the optimum in sealless piston for hydraulic cylinder.

  • PDF

A Lubrication Analysis between the Piston and Cylinder in Hydraulic Piston Pumps Part 1: The effect of piston shape (유압 피스톤 펌프의 피스톤과 실린더 사이의 윤활해석 (제1보:피스톤 형상에 의한 영향))

  • 박태조;전병수
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.64-69
    • /
    • 1998
  • A numerical analysis is carried out to study the effect of piston shape on the lubrication characteristics between the cylinder and piston in hydraulic piston pumps. The results showed that the shape of piston affect significantly the pressure distribution in the clearance, the lateral force acting on the piston and leakage flow through the clearance. Partially tapered piston is more effective than any other piston shapes because it reduces the possibility of hydraulic locking and improves the volumetric efficiency of the pump.