• Title/Summary/Keyword: Hydration resistance

Search Result 165, Processing Time 0.028 seconds

A Characteristics of Fly-ash Concrete Incorporating Tablet-shaped Accelerators in Cold Weather (한중 환경에서 정제된 급결제를 혼입한 플라이애시 콘크리트의 특성)

  • Lee, Yong-Soo;Ryou, Jae-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • Although the accelerators are used at the early stage to control setting-time and strength of concrete when cold-weather concrete is utilized, no security of workability occurs because the early hydration makes them react rapidly. Therefore, the tablet used in previous study is applied in this study. In particular, because a small amount of fly-ash being replaced in cold weather concrete of domestic, fly-ash concrete incorporating the tablet is discussed in workability by elapsed time, early strength to ensure the development of adequate strength, and freezing-thawing resistance. As a result, both 0.5 and 1.0% tablets were found to be superior. Thus, it was verified in cold weather concrete incorporating fly-ash that workability can be secured, as well as the development of early strength to prevent early frost.

Affecting Analysis of Air Content on the Freeze-Thaw Durability of Concrete (콘크리트의 동결융해 내구성에 공기량이 미치는 영향 분석)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kang, Hye-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.565-568
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Concrete durability influence Air Content. Presently, We used to AE(air-entraining agent) for increase freeze-thaw durability. So, on concrete Air Spacing ratio used $200{\mu}m{\sim}230{\mu}m$ in Canada and under $250{\mu}m$ in Japan institution. Use of Air content has been and will continue to be a major part of concrete durability and scaling. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. The prepared optimum mix concrete in this study show that freeze-thaw and scaling resistance of Non-AE(air content 1.5%) and AE (air content 4.5%, 7.2%). Solution concentrations of deicing agent were good result, and the pore system and change of hydration products is not difference comparing before freeze-thaw test.

  • PDF

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

Strength Properties of Cement Mortar with Slurry-Typed Cellulous Fiber (슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.210-215
    • /
    • 2019
  • Concrete members with wide surface area are vulnerable to cracking due to material behavior such as hydration heat and drying shrinkage. Recently many researches have been performed on improvement of strength and cracking resistance through fiber reinforcement, which are mainly focused on enhancement of tensile strength against cracking due to material behavior. In this paper, CFs(Cellulous Fibers) are manufactured for slurry type, and the engineering properties in cement mortar incorporated with CFs are evaluated for flow-ability, compressive, and flexural strength. Through SEM analysis, a pull-off characteristics of CF in matrix are analyzed. With CF addition of $0.5kg/m^3{\sim}1.0kg/m^3$, flexural strength is much improved and enough toughness of pull-off is also observed unlike plastic fiber containing smooth surface.

Evaluation of Mechanical and Durability Performance of Mortar Shotcrete (모르타르 숏크리트의 역학성능 및 내구성능 평가)

  • Park, Byoungsun;Jang, Kun Young;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.68-74
    • /
    • 2019
  • In this study, the mechanical property and durability of improved bond performance mortar shotcrete was investigated. Mortar shotcrete was prepared by replacing coarse aggregate with 100% fine aggregate in the shotcrete mixture proportion proposed in the road construction standard specification. OPC, GGBFS and anhydrite were used as binders, and polymer powder was substituted for 1% and 2% of binder for improving bond property. From the experimental results, it was found that the compressive strength decreased with increasing polymer addition, but the bond strength increased. The addition of polymer to mortar shotcrete also reduced the drying shrinkage and improved the resistance to carbonation. Initial hydration heat of mortar shotcrete decreased with the addition of polymer, and it was judged that the initial compressive strength decreased.

Physical Characteristics of Concrete Using High-Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 사용한 콘크리트의 물리적 특성)

  • Lee, Young-Do;Ha, Jung-Soo;Kim, Han-Sic
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The cement industry is considered a major industry for reducing greenhouse gases, increasing the amount of binding materials that can replace cement in concrete is known as the most effective method for reducing carbon dioxide. Therefore, research is being carried out to utilize large quantities of by-products that can be used as alternatives to cement. However, there are problems with reduced strength at early age and retarded setting for major reasons that do not increase the amount of mixture of binders used to replace cement. Thus, in this study, normal cement and high-fineness cement were used and physical properties were reviewed by placing differences in fly ash usage depending on the type of cement. As a result, the characteristics of strength were similar, and the hydration temperature was the same level. Also, the durability test showed that the length change, carbonation resistance were better than those of normal cement. Therefore, it is confirmed that the use of high-fineness cement is effective to reduce the amount of cement used and using more by-products.

Cracking and Durability Characteristics of High-early-strength Pavement Concrete for Large Areas using Calcium Nitrate (질산칼슘 혼화재를 사용한 대단면 급속 포장 콘크리트의 균열 및 내구특성)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.101-108
    • /
    • 2009
  • The performance of high-early strength pavement concrete for large areas is influenced by the physical and chemical environment during service life. Generally, penetration, diffusion, and absorption of harmful materials that exist outside the concrete cause damage to its structure. Thus, we have to use a mixture for durability to keep the required quality for the planned service life. Moreover, in using high-early-strength cement and accelerators, a high heat of hydration to create the initial strength can cause cracks. Based on evaluations from optimal mix proportions of high-early-strength pavement concrete for large areas, we conducted water permeability, abrasion resistance, freeze-thaw, plastic, drying, and autogenous shrinkage tests. Test result showed that a mix of accelerator and PVA fibers showed excellent performance.

Properties of Steel Corrosion as a Hydration of Mortar with Calcium Aluminate Cement (알루민산칼슘 시멘트를 사용한 모르타르의 수화도에 따른 철근 부식 특성)

  • Min-Cheol Shin;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.214-221
    • /
    • 2024
  • The present study concerns the resistance of calcium aluminate cement (CAC) to steel corrosion. The corrosion behavior of steel, chloride binding/buffering and chloride transport were evaluated in order to predict the risk of steel corrosion. The CAC mortar exhibited no corrosion on steel, irrespective of the curing temperature and CAC types, whereas ordinary Portland cement (OPC) showed a severe corrosion on the steel surface. The chloride binding capacity of CAC found to be was lower than that of OPC, yet buffering capacity against pH decrease was found to be significantly higher in the CAC paste. Furthermore, chloride ingress at all depths was found to be reduced in CAC, thereby reducing the risk of corrosion.

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.