DOI QR코드

DOI QR Code

Properties of Steel Corrosion as a Hydration of Mortar with Calcium Aluminate Cement

알루민산칼슘 시멘트를 사용한 모르타르의 수화도에 따른 철근 부식 특성

  • Min-Cheol Shin (Dept. of Civil & Environmental System Eng., Hanyang University) ;
  • Ki-Yong Ann (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 신민철 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Received : 2024.05.19
  • Accepted : 2024.05.24
  • Published : 2024.06.30

Abstract

The present study concerns the resistance of calcium aluminate cement (CAC) to steel corrosion. The corrosion behavior of steel, chloride binding/buffering and chloride transport were evaluated in order to predict the risk of steel corrosion. The CAC mortar exhibited no corrosion on steel, irrespective of the curing temperature and CAC types, whereas ordinary Portland cement (OPC) showed a severe corrosion on the steel surface. The chloride binding capacity of CAC found to be was lower than that of OPC, yet buffering capacity against pH decrease was found to be significantly higher in the CAC paste. Furthermore, chloride ingress at all depths was found to be reduced in CAC, thereby reducing the risk of corrosion.

본 연구에서는 알루민산칼슘 시멘트(CAC)의 철근 부식 저항성에 관한 것으로서 철근 부식의 위험성을 예측하기 위하여 철근 부식 거동, 염화물 고정화/완충 및 염화물 침투성을 평가하였다. 알루민산칼슘 시멘트 모르타르는 양생 온도와 시멘트의 종류에 관계없이 철근에 부식이 발생하지 않은 반면, 보통포틀랜드시멘트(OPC)는 철근 표면에 심각한 부식이 발생하였다. CAC의 염화물 결합력은 OPC에 비하여 낮은 것으로 나타났지만, pH 감소에 대한 완충 능력은 CAC 페이스트가 훨씬 더 높은 것으로 나타났다. 또한 알루민산칼슘 시멘트를 사용한 시편의 모든 깊이에서 염화물 유입이 감소함으로서 철근 부식의 위험성이 낮아지는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1A2C3012248).

References

  1. Ann, K.Y., Buenfeld, N.R. (2007). The effect of calcium nitrite on the chloride-induced corrosion of steel in concrete, Magazine of Concrete Research, 59(9), 689-697.
  2. Ann, K.Y., Kim, T.S., Kim, J.H., Kim, S.H. (2010). The resistance of high alumina cement against corrosion of steel in concrete, Construction and Building Materials, 24(8), 1502-1510.
  3. Ann, K.Y., Yang, H.J., Kim, H., Kim, J., Cho, W.J., Jung, H.S. (2021). Steel corrosion in calcium aluminate cement mortar against chloride, ACI Materials Journal, 118(1), 31-39.
  4. Argiz, C., Sanjuan, M.A., Borges, P.C., Alvarez, E. (2018). Modeling of corrosion rate and resistivity of steel reinforcement of calcium aluminate cement mortar, Advances in Civil Engineering, 2018, 1096282.
  5. Arya, C. (1997). Calcium Aluminate Cements in Construction - a reassessment, Concrete Society Technical Report, 46.
  6. ASTM International, ASTM C 1218 (2020). Standard Test Method for Water-Soluble Chloride in Mortar and Concrete, United States.
  7. Fu, Y., Ding, J. (1996). Corrosion protection of reinforcement in modified high-alumina cement concrete, ACI Materials Journal, 93(6), 609-612.
  8. Gillott, J.E., Quinn, T. (2003). Strength and sulfate resistance of concrete made with high alumina cement, type 10 Portland cement, type 10 Portland cement plus fly ash and type 50 Portland cement, Cement, Concrete, and Aggregates, 25(1), 21-27.
  9. Glass, G.K., Buenfeld, N.R. (2000). The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete, Corrosion Science, 42(2), 329-344.
  10. Jin, S.H., Yang, H.J., Hwang, J.P., Ann, K.Y. (2016). Corrosion behaviour of steel in CAC-mixed concrete containing different concentrations of chloride, Construction and Building Materials, 110, 227-234.
  11. Jung, M.S., Shin, M.C., Ann, K.Y. (2012). Fingerprinting of a concrete mix proportion using the acid neutralisation capacity of concrete matrices, Construction and Building Materials, 26(1), 65-71.
  12. Kim, D.G., Lee, H.J., Ann, K.Y. (2011). Semi-quantitative prediction of the corrosion risk of steel in concrete using XRD analysis, Journal of Advanced Concrete Technology, 9(3), 231-239.
  13. Macias, A., Kindness, A., Glasser, F.P. (1996). Corrosion behaviour of steel in high alumina cement mortar cured at 5, 25 and 55 ℃: chemical and physical factors, Journal of Materials Science, 31, 2279-2289.
  14. Neville, A.M. (1995). Properties of Concrete, Third Ed, London, Longman.
  15. Sanjuan, M.A. (2000). Overview on electrochemical parameters to assess the corrosion state of steel reinforcement in CAC mortar and concrete, Journal of Materials Science, 35(1), 105-108.
  16. Scrivener, K.L., Cabiron, J.L., Letourneux, R. (1999). High-performance concretes from calcium aluminate cements, Cement and Concrete Research, 29(8), 1215-1223.
  17. Scrivener, K.L., Capmas, A. (2004). Calcium Aluminate Cement In: P. Hewlett, M. Liska (Eds.) Lea's Chemistry of Cement and Concrete, Elsevier, Cambridge, MA, 1066.
  18. Song, H.W., Lee, C.H., Jung, M.S., Ann, K.Y. (2008). Development of chloride binding capacity in cement pastes and influence of the pH of hydration products, Canadian Journal of Civil Engineering, 35(12), 1427-1434.