• 제목/요약/키워드: Hydration product

검색결과 133건 처리시간 0.022초

An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters

  • Biernacki, Joseph J.;Gottapu, Manohar
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.989-999
    • /
    • 2015
  • An advanced continuum-based multi-physical single particle model was recently introduce for the hydration of tricalcium silicate ($C_3S$). In this model, the dissolution and the precipitation events are modeled as two different yet simultaneous chemical reactions. Product precipitation involves a nucleation and growth mechanism wherein nucleation is assumed to happen only at the surface of the unreacted core and product growth is characterized via a two-step densification mechanism having rapid growth of a low density initial product followed by slow densification. Although this modeling strategy has been shown to nicely mimic all stages of $C_3S$ hydration - dissolution, dormancy (induction), the onset of rapid hydration, the transition to slow hydration and prolonged reaction - the major criticism is that many adjustable parameters are required. If formulated correctly, however, the model parameters are shown here to be statistically independent and significant.

탄소나노튜브가 첨가된 시멘트복합체의 미시적특성분석 (Microscopic Characterization of Cement Composites with Carbon Nanotubes)

  • 김영민;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.176-177
    • /
    • 2019
  • As a result of the Rietveld analysis to determine the effect of carbon nanotubes on the hydration products of cement composites, the quantitative difference of hydration products according to the addition rate of carbon nanotubes was not significant. Ettringite, an early hydration product, was measured to be slightly higher than the planes with carbon nanotubes over all ages. Therefore, it seems that carbon nanotubes have no effect on the hydration production in cement paste.

  • PDF

포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가 (Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker)

  • 최상현;박병선;차수원
    • 한국건설순환자원학회논문집
    • /
    • 제8권1호
    • /
    • pp.81-87
    • /
    • 2020
  • 본 연구에서는 자기치유 콘크리트의 배합에 따른 수화과정을 해석하였다. 시뮬레이션을 위해 열역학적 모델 GEMS를 사용하였으며, 시멘트 수화모델로 Parrot & Killoh의 경험적 모델을 미소수화열시험의 결과와의 비교분석을 통해 타당성을 검증하였고, 본 연구에서 바인더로 치환하여 사용하는 클링커의 수화모델을 제시하여 사용하였다. 클링커를 0%, 10%, 20%, 30%로 치환한 배합에 따른 시뮬레이션 결과로 클링커를 사용한 배합이 균열시점에서 자기치유물질 생성량이 대폭 증가하는 것으로 확인되었다. 그러나 치환율이 증가함에 따라 CSHQ와 Portlandite의 생성량이 감소해 콘크리트의 기본적 특성인 강도와 내구성에 영향을 주는 것으로 판단되며, 본 논문에서 고려한 자기치유 콘크리트 배합중 클링커를 10%를 치환한 SHP-10배합이 가장 효율적인 재료인 것으로 판단된다.

졸겔법에 의한 $CaO-P_2O_5-SiO_2$계 미세분말의 수화 및 강도특성 (Properties of Hydration and Strength of Sol-gol Derived Fine Particle in the System $CaO-P_2O_5-SiO_2$)

  • 이형우;김정환
    • 한국세라믹학회지
    • /
    • 제31권10호
    • /
    • pp.1231-1239
    • /
    • 1994
  • In this study, gel powder which had relatively high hydration reactivity in CaO and P2O5 rich composition of CaO-P2O5-SiO2-H2O system was prepared by sol-gel process and its hydrated specimen was manufactured. The it was investigated to appropriate calcination temperature in sol-gel process which hydrated specimen of gel powder have proven to strength and the effect of factors influenced strength in hydration process. The major product of before and after hydration reaction was hydroxyapatite, and crystalline phase of C-S-H was already formed during gelation process. After hydration reaction of pressed specimen, crystalline phase of C-S-P-H was formed. It was hydrated product of silicocarnotite (5CaO.P2O5.SiO2). Gel phases of C-S-H and C-S-P-H occured as a result of partial substitution of amorphous silica by P2O5 was formed. The strength of hydrated hardened body is developed by strong bonding and bridging between the gel phases of C-S-H or C-S-P-H and the crystalline products such as hydroxyapatite, Ca(OH)2 C-S-H and C-S-P-H. In addition, the ultrafine gel powder have an great effect on increase of hydration reaction.

  • PDF

설계강도 150 MPa 초고강도 콘크리트용 시멘트 결합재의 개발 (Development of Pre-Mix Cement for 150 MPa Ultra High Strength Concrete)

  • 황인성;김성수;차완호;권오봉;손유신;이승훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.25-28
    • /
    • 2006
  • This study investigated pre-mixed cement combined with ordinary portland cement, BF and SF, in order to manufacture cement binder, which is possible to produce 150MPa ultra high strength concrete. The BF used in this study reduces and control hydration heat. It can also improve concrete fluidity, while AP increases hydration product and accelerates reaction of BF. SF has micro filler effect and makes pozzolanic reaction. It also fabricates high density internal organization. This developed pre-mixed cement can reduce hydration heat and increase hydration product. It is possible to fabricate high density organization and to secure homogeneity. The mock-up test of ultra high strength concrete showed excellent dispersibility and workability and indicated compressive strength more than 150MPa at 28 days.

  • PDF

Tricalciumaluminate의 초기 수화반응에 미치는 $K_2O$의 영향 (Effect of Potassium Oxide on the Early Hydration of Tricalciumaluminate)

  • 한기성;최만;서일영
    • 한국세라믹학회지
    • /
    • 제19권2호
    • /
    • pp.133-138
    • /
    • 1982
  • Two kinds of clinker liquid melts, one containing 2.0% of $K_2O$ and the other without $K_2O$, were prepared with the similar composition as those developed during the firing of portland cement clinker. One portion of melt was quenched and found to consist of glass together with traces of proto-$C_3A$, and the other portion was allowed to cool spontaneously to crystallize $C_3A$ and calciumferrite well. The product obtained by crystallization of the melt without $K_2O$showed cubic $C_3A$, while orthorhombic $C_3A$ was formed from the crystallized product containing $K_2O$. Studies on the hydration behavior of the samples made from the melts with 30% of gypsum were carried out for 24 hours by observation at regular intervals ettringite, monosulphate hydrates and gypsum which were formed or consumed during hydration. The samples without $K_2O$ in the melts were hydrated wth addition of proper amount of $K_2SO_4$ in the water for hydration. Hydration behavior of glassified $C_3A$ showed that it has low reactivity relative to crystallized $C_3A$, and also hydration reactivity of orthorhombic $C_3A$ was much lower than that of cubic $C_3A$ in 60 minutes. Potassium sulphate in the solution reduced the hydration reactivity of $C_3A$ . Evolution peaks of hydration heat examined by twin-type conduction micro-calorimeter showed that glassified $C_3A$ without $K_2O$ had secondary peak after 9 hours and $C_3A$ containing $K_2O$ after 12 hours. When crystallized $C_3A$ was hydrated, initial peaks of hydration heat were considerably high and there was no secondary peak for cubic $C_3A$ but the secondary peak of orthorhombic $C_3A$ appeared after 4 hours.

  • PDF

Development of Multi-Components Model of Cement Hydration

  • ;이한승;경제운;박기봉
    • 한국세라믹학회:학술대회논문집
    • /
    • 한국세라믹학회 2007년도 제34회 시멘트 심포지엄
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of hydration of cement mineral component, such as $C_{3}S$, $C_{2}S$, $C_{3}A$, $C_{4}AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component integrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

석회석 미분말을 혼입한 시멘트 페이스트의 수화반응 및 역학적 특성 분석에 관한 연구 (A Study on Hydration kinetics and Mechanical Properties of Cement Paste Incoporating Limestone Filler)

  • 신기수;방미진;박기봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.230-231
    • /
    • 2017
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

  • PDF

Prediction of temperature distribution in hardening silica fume-blended concrete

  • Wang, Xiao-Yong
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.97-115
    • /
    • 2014
  • Silica fume is a by-product of induction arc furnaces and has long been used as a mineral admixture to produce high-strength, high-performance concrete. Due to the pozzolanic reaction between calcium hydroxide and silica fume, compared with that of Portland cement, the hydration of concrete containing silica fume is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing silica fume. The heat evolution rate of silica fume concrete is determined from the contribution of cement hydration and the pozzolanic reaction. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.