• Title/Summary/Keyword: Hydration model

Search Result 208, Processing Time 0.025 seconds

Application of DV-X$\alpha$ Method to ${\gamma}$-2CaO.SiO$_2$

  • Yamaguchi, Norio;Fujimori, Hirotaka;Ioku, Koji;Goto, Seishi;Nakayasu, Tetsuo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.339-342
    • /
    • 2000
  • In the present study, we attempted to apply DV-X$\alpha$ method to expressing the reactivity of materials. The expression of reactivity was discussed by comparison between ${\gamma}$-C$_2$G having hydraulic activity and ${\gamma}$-C$_2$S not having hydraulic activity at normal conditions. It was found that the model cluster used for calculation can finely reproduce the bulk and surface states using with and without point charge, respectively. The hydration state was also represented by placing OH ̄ on the surface of the cluster. It was calculated that the bond strength of the first layer (as surface) was bigger than that of inner layers (as bulk) for ${\gamma}$-C$_2$S while that of the first layer for ${\gamma}$-C$_2$G was smaller than that of inner layers. Subsequently a model in which OH ̄ is coordinated on Ca at the surface was also calculated. The bond strength with OH ̄ was stronger than that without OH ̄, while for ${\gamma}$-C$_2$G the bond strength with OH ̄ was weaker than that without OH ̄. From these results, it is concluded that the hydraulic activity depends on whether the bond strength for hydrated state becomes weaker than that unhydrated state or not.

  • PDF

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Application of internet of things for structural assessment of concrete structures: Approach via experimental study

  • D. Jegatheeswaran;P. Ashokkumar
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Assessment of the compressive strength of concrete plays a major role during formwork removal and in the prestressing process. In concrete, temperature changes occur due to hydration which is an influencing factor that decides the compressive strength of concrete. Many methods are available to find the compressive strength of concrete, but the maturity method has the advantage of prognosticating strength without destruction. The temperature-time factor is found using a LM35 temperature sensor through the IoT technique. An experimental investigation was carried out with 56 concrete cubes, where 35 cubes were for obtaining the compressive strength of concrete using a universal testing machine while 21 concrete cubes monitored concrete's temperature by embedding a temperature sensor in each grade of M25, M30, M35, and M40 concrete. The mathematical prediction model equation was developed based on the temperature-time factor during the early age compressive strength on the 1st, 2nd, 3rd and 7th days in the M25, M30, M35, and M40 grades of concrete with their temperature. The 14th, 21st and 28th day's compressive strength was predicted with the mathematical predicted equation and compared with conventional results which fall within a 2% difference. The compressive strength of concrete at any desired age (day) before reaching 28 days results in the discovery of the prediction coefficient. Comparative analysis of the results found by the predicted mathematical model show that, it was very close to the results of the conventional method.

Compound K improves skin barrier function by increasing SPINK5 expression

  • Park, No-June;Bong, Sim-Kyu;Lee, Sullim;Jung, Yujung;Jegal, Hyun;Kim, Jinchul;Kim, Si-Kwan;Kim, Yong Kee;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.799-807
    • /
    • 2020
  • Background: The skin acts as a barrier to protect organisms against harmful exogenous agents. Compound K (CK) is an active metabolite of ginsenoside Rb1, Rb2 and Rc, and researchers have focused on its skin protective efficacy. In this study, we hypothesized that increased expression of the serine protease inhibitor Kazal type-5 (SPINK5) may improve skin barrier function. Methods: We screened several ginsenosides to increase SPINK5 gene promoter activity using a transactivation assay and found that CK can increase SPINK5 expression. To investigate the protective effect of CK on the skin barrier, RT-PCR and Western blotting were performed to investigate the expression levels of SPINK5, kallikrein 5 (KLK5), KLK7 and PAR2 in UVB-irradiated HaCaT cells. Measurement of transepidermal water loss (TEWL) and histological changes associated with the skin barrier were performed in a UVB-irradiated mouse model and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis-like model. Results: CK treatment increased the expression of SPINK5 and decreased the expression of its downstream genes, such as KLKs and PAR2. In the UVB-irradiated mouse model and the DNCB-induced atopic dermatitis model, CK restored increased TEWL and decreased hydration and epidermal hyperplasia. In addition, CK normalized the reduced SPINK5 expression caused by UVB or DNCB, thereby restoring the expression of the proteins involved in desquamation to a level similar to normal. Conclusions: Our data showed that CK contributes to improving skin-barrier function in UVB-irradiated and DNCB-induced atopic dermatitis-like models through SPINK5. These results suggest that therapeutic attempts with CK might be useful in treating barrier-disrupted diseases.

Effects of Collagen Tripeptide Supplement on Photoaging and Epidermal Skin Barrier in UVB-exposed Hairless Mice

  • Pyun, Hee-Bong;Kim, Minji;Park, Jieun;Sakai, Yasuo;Numata, Noriaki;Shin, Jin-Yeong;Shin, Hyun-Jung;Kim, Do-Un;Hwang, Jae-Kwan
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.245-253
    • /
    • 2012
  • Collagen tripeptide (CTP) is a functional food material with several biological effects such as improving dry skin and wound and bone fracture healing. This study focused on the anti-photoaging effects of CTP on a hairless mouse model. To evaluate the effects of CTP on UVB-induced skin wrinkle formation in vivo, the hairless mice were exposed to UVB radiation with oral administration of CTP for 14 weeks. Compared with the untreated UVB control group, mice treated with CTP showed significantly reduced wrinkle formation, skin thickening, and transepidermal water loss (TEWL). Skin hydration and hydroxyproline were increased in the CTP-treated group. Moreover, oral administration of CTP prevented UVB-induced MMP-3 and -13 activities as well as MMP-2 and -9 expressions. Oral administration of CTP increased skin elasticity and decreased abnormal elastic fiber formation. Erythema was also decreased in the CTP-treated group. Taken together, these results strongly suggest that CTP has potential as an anti-photoaging agent.

A Moisture Diffusivity Model of Hardening Concrete (경화하는 콘크리트의 수분확산도 모형)

  • Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.31-38
    • /
    • 2005
  • Concrete has higher vapor pressure than its surrounding ambient air immediately after placement. Moisture at concrete surface evaporates to the ambient air to adjust equilibrium of the vapor pressure between them. The moisture inside the concrete moves to the surface because the evaporation at the surface causes gradient of vapor pressure inside the concrete. Plastic cracking, degree of hydration, strength development, and others caused by velocity of the moisture movement significantly influences quality of concrete. In this paper, the moisture diffusivity of early-age concrete was back-calculated using governing equation of the moisture diffusion, and temperature and relative humidity of concrete measured in a laboratory. The moisture diffusivity of the concrete was modeled using the back-calculated moisture diffusivity. The relative humidity of the concrete calculated by finite element method (FEM) using the modeled moisture diffusivity as Input data coincided with the measured relative humidity well.

  • PDF

Intracellular delivery and anti-tumor activity of polyethyleneglycol liposomes containing cationic lipid (양이온성 지질이 포함된 PEG 리포솜의 세포내 이입 및 항암효력 평가)

  • Jung, Soon-Hwa;Kim, Sung-Kyu;Jung, Suk-Hyun;Seong, Ha-Soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • Liposomes are spherical vesicles composed of lipid bilayer membranes. However, the conventional liposomes have been found to be plagued by rapid opsonization and taken up by the reticuloendothelial system (RES), resulting in shortened circulation time and limited intracellular uptake to target cell. In this study, polyethyleneglycol-cationic liposomes (PCL) containing cationic lipid and DSPE-mPEG were prepared by thin film cast-hydration method. The PEG liposomes had approximately $97.0{\pm}1.3\;nm$ of mean particle diameter and $-21.7{\pm}1.2\;mV$ of zeta potential value. PCL had $96.4{\pm}1.8\;nm$ of mean particle diameter and $-8.7{\pm}1.1\;mV$ of zeta potential value with a decrease of about 10 mV compared to the PEG liposomes. Loading of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX in liposomes was about $95.0{\pm}1.9%$. Intracellular uptake and cytotoxicity of PCL were higher than that of PEG liposomes to murine B16F10 melanoma cells. In addition, anti-tumor activity of PCL was similar to that of PEG liposomes on growth of A549 human lung carcinoma in BALB/c mice. Consequently, PCL modified with cationic lipid may be applicable as anticancer drug carriers that can increase intracellular uptake and therapeutic efficacy.

Temperature Distribution and It's Contribution to Self-equilibrium Thermal Stress in Bridge (교량 단면 내 온도분포에 따른 자체평형 열응력 해석)

  • Kwak, Hyo-Gyoung;Kwon, Se-Hyung;Ha, Sang-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.531-542
    • /
    • 2011
  • The time-dependent temperature distribution across the section in bridges is determined on the basis of the three-dimensional finite element analyses and numerical time integration in this study. The material properties which change with time and thermal stress of concrete are taken into account to effectively trace the early-age structural responses. Since the temperature distribution is nonlinear and depends upon many material constants such as the thermal conductivity, specific heat, hydration heat of concrete, heat transfer coefficients and solar radiation, three representative influencing factors of the construction season, wind velocity and bridge pavement are considered at the parametric studies. The validity of the introduced numerical model is established by comparing the analytical predictions with results from previous analytical studies. On the basis of parametric studies for four different bridge sections, it is found that the creep deformation in concrete bridges must be considered to reach more reasonable design results and the temperature distribution proposed in the Korean bridge design specification need to be improved.

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 자기수축 모델식에 관한 연구)

  • Kang, Su-Tae;Park, Jong-Sup;Joh, Chang-Bin;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.725-728
    • /
    • 2008
  • Most of shrinkage is mainly caused by autogenous shrinkage in Ultra high strength steel-fiber reinforced cementitious composites(UHSFRC). water to binder ratio is very low, about 0.2. It occurs faster hydration and cause a large amount of autogenous shrinkage in early ages. the large autogenous shrinkage can cause harmful cracks in a structure and deteriorate the designed structural performance. therefore it is very important to predict the autogenous shrinkage accurately. The study about the autogenous shrinkage of UHSFRC was carried out in this paper. through comparing with JSCE recommendations for UHSFRC, it was found out that UHSFRC in this study showed higher autogenous shrinkage than that of JSCE. And Applicability of early proposed models by some researchers was also investigated. the analytical results let us know that Miyazawa's model showed the best agreement with the experimentally obtained autogenous shrinkage of UHSFRC.

  • PDF

Moisturization and Transdermal Penetration Characteristics of PEGimpregnated Aloe vera Gel from DIS Processing (DIS에 의한 Polyethylene Glycol 함침 알로에 베라 겔의 보습 및 경피흡수 특성)

  • Kwon, Hye Mi;Hur, Won;Lee, Shin Young
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.319-326
    • /
    • 2013
  • This study was carried out to investigate the in vitro and in vivo moisturizing properties and percutaneous absorption of PEG-impregnated Aloe vera gel. The PEG-i-Aloe gel was obtained from dewatering and impregnation by soaking (DIS) of Aloe vera leaf slice. The moisturizing property of the obtained sample was evaluated by moisture determination using gravimetric method in desiccator under different RH% and by water sorption-desorption test on human skin. The transdermal penetration characteristics of PEG-i-Aloe gel was investigated by Franz diffusion cell in vitro transdermal absorption method. PEG-i-Aloe gel had high moisture retention ability and could significantly lead the enhancing skin hydration status as well as reducing the skin water loss due to the film formation as a skin barrier. The skin penetration rate of PEGi- Aloe gel at steady state was 9.76 ${\mu}g/(h{\cdot}cm^2)$ and the quantity of the transdermal absorption was 144 ${\mu}g/cm^2$ in 9 hr. The penetration mechanism was well fitted with Higuchi model ($R^2$ = 0.974-0.994). The results show that PEG-i-Aloe gel has the significant moisturizing effect and strong penetration of the animal skin. It could be used as the moisturizing additive in cosmetic skin products.