• Title/Summary/Keyword: Hydration model

Search Result 208, Processing Time 0.027 seconds

Analysis of the Effect of Solar Radiation on Internal Temperature Distribution in Concrete Mat Foundation (태양 복사열이 콘크리트 매트기초의 내부 온도분포에 미치는 영향에 관한 해석적 연구)

  • Song, Chung Hyun;Lee, Chang Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • This research investigated the effect of solar radiation on the temperature distribution in concrete mat foundation. Zhang and Huang Model was utilized to estimate solar radiation heat at a given date and time. A one-dimensional finite element formula was derived with the fundamental laws of heat transfer and Galerkin method. Based on the formula, a one dimensional finite element analysis code was developed using MATLAB. Hydration heat analysis of mat foundation were conducted using the developed code. It was found that the solar radiation reduced the maximum temperature difference in mat foundation, and this temperature difference reduction was more prominent in case of summer season cast, a higher initial concrete temperature, and a thicker mat foundation depth. The research recommended that the solar radiation should be considered in hydration heat analysis of concrete mat foundation so as not to overestimate the maximum temperature difference in mat foundation.

Development of Chloride Ingress Model in Reinforced Concrete Structures (철근콘크리트 구조물의 염소이온 침투 모델 개발)

  • 구현본;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.731-736
    • /
    • 2002
  • The degradation of reinforced concrete (RC) structures due to physical and chemical attacks has been a major issue in construction engineering. Deterioration of RC structures due to chloride attack followed by reinforcement corrosion is one of the serious problems. The objective of this study is to develop a form of mathematical model of chloride ingress into concrete. In order to overcome some limits of the previous approaches, a mathematical model of chloride ingress into concrete consisting of chloride solution intrusion through the capillary pore and chloride ion diffusion through the pore water was proposed. Moreover, the variability of diffusivity of chloride ion due to degree of hydration of concrete, relative humidity in pore, exposure condition, and variation of chloride binding was considered in the chloride ingress model.

  • PDF

Analytical model of expansion for electric arc furnace oxidizing slag-containing concrete

  • Shu, Chun-Ya;Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.937-950
    • /
    • 2016
  • This study applied autoclave expansion and heat curing to accelerate the hydration of concrete and investigated how these methods affect the expansion rate, crack pattern, aggregate size effect, and expansion of electric arc furnace oxidizing slag (EOS)-containing concrete. An expansion prediction model was simulated to estimate the expansion behavior over a long period and to establish usage guidelines for EOS aggregates. The results showed that the EOS content in concrete should range between 20% and 30% depending on the construction conditions, and that coarse aggregates with a diameter of ${\geq}4.75-mm$ are not applicable to construction engineering. By comparison, aggregates with a size of 1.18-0.03 mm resulted in higher expansion rates; these aggregates can be used depending on the construction conditions. On Day 21, the prediction model attained a coefficient of determination ($R^2$) of at least 0.9.

Coupled chemical and mechanical processes in concrete structures with respect to aging

  • Cramer, Friedhelm;Kowalsky, Ursula;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • Accurate prognoses of the durability of concrete structures require a detailed description of the continuously running aging processes and a consideration of the complete load history. Therefore, in the framework of continuous porous media mechanics a model is developed, which allows a detailed analysis of the most important aging processes of concrete as well as a flexible coupling of different processes. An overview of the prediction model and the balance equations is given. The material dependent model equations, the consequences of coupling different processes and the solution scheme are discussed. In two case studies the aging of concrete due to hydration and chloride penetration are presented, which illustrate the capabilities and the characteristics of the developed model.

Microstructure modeling of carbonation of metakaolin blended concrete

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • Metakaolin (MK), which is increasingly being used to produce high performance concrete, is produced by calcining purified kaolinite between 650 and $700^{\circ}C$ in a rotary kiln. The carbonation resistance of metakaolin blended concrete is lower than that of control concrete. Hence, it is critical to consider carbonation durability for rationally using metakaolin in the concrete industry. This study presents microstructure modeling during the carbonation of metakaolin blended concrete. First, based on a blended hydration mo del, the amount of carbonatable substances and porosity are determined. Second, based on the chemical reactions between carbon dioxide and carbonatable substances, the reduction of concrete porosity due to carbonation is calculated. Furthermore, $CO_2$ diffusivity is evaluated considering the concrete composition and exposed environment. The carbonation depth of concrete is analyzed using a diffusion-based model. The proposed microstructure model takes into account the influences of concrete composition, concrete curing, and exposure condition on carbonation. The proposed model is useful as a predetermination tool for the evaluation of the carbonation service life of metakaolin blended concrete.

Effects of Glycerin and PEG 400 in Donor and Receptor Solutions upon Skin Permeation of Drug (In vitro 경피흡수 실험시 Donor와 Receptor용액중의 글리세린과 PEG 400이 약물의 경피투과도에 미치는 영향)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.99-103
    • /
    • 1996
  • Effects of glycerin and PEG 400 in donor and receptor solutions upon skin permeation of drug were investigated. Deoxycortisone was used as a model compound. In vitro skin permeation study with freshly excised hairless mouse skin was performed and the steady-state skin permeation rates of the drug were determined in different fractions of glycerin or PEG 400 in donor and receptor solutions. Glycerin in donor solution didn't show any effect on the skin permeation rate of deoxycortisone. However glycerin in receptor solution showed significant effect on the skin permeation rate of the drug. In glycerin, there's a critical concentration for balancing hydration and dehydration of skin. At low concentration, less than 20 %, glycerin showed the enhancement of the flux due to the hydration effect of skin. At high concentration, more than 30 %, glycerin retard the permeation rate which might be due to the dehydration effect on the dermis layer. Since dermis has more water content than the stratum corneum, the steady state skin permeation rates were more influenced when glycerin was in receptor solution than that of in donor solution. PEG 400 aqueous solutions doesn't affect the steady state permeation rate of deoxycortisone significantly.

  • PDF

BCRP Expression in VX2 Rabbit Liver Tumours and its Effects on Tumour Recurrence, Metastasis and Treatment Tolerability

  • Li, Cai-Xia;Zhang, Kai;Xie, Fu-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5089-5093
    • /
    • 2013
  • Objective: This study aimed to investigate the effects of BCRP expression on tumor recurrence, metastasis and treatment tolerability. Methods: A VX2 rabbit liver tumor model was established. Division was randomly into 4 groups: namely saline control group; A group, given hydration lipiodol; B group, Ad-p53; and C group, Ad-p53+hydration lipiodol. After the intervention, samples were collected to detect the BCRP, MMP-2, VEGF and PCNA. Results: The expression of BCRP, MMP-2, PCNA and VEGF in tumors in Group A had no significant difference when compared with the control group, while in B and C group, the values were significantly lower (P<0.05). BCRP positive expression in metastatic lesions significantly increased (P<0.05), and was correlated with MMP-2 ($X^2=6.172$, P=0.0131). Conclusions: BCRP may play an important role in mediating liver cancer multidrug resistance to chemotherapy, and may be correlated with tumor recurrence and metastasis, which leads to weakened treatment effect. Ad-P53 can down-regulate the expression of related genes, playing a role in multidrug resistance reversal and increased sensitivity in liver cancer treatment.

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.

Modeling of combined thermal and mechanical action in roller compacted concrete dam by three-dimensional finite element method

  • Abdulrazeg, A.A.;Noorzaei, J.;Mohammed, T.A.;Jaafar, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.1-25
    • /
    • 2013
  • A combined thermal and mechanical action in roller compacted concrete (RCC) dam analysis is carried out using a three-dimensional finite element method. In this work a numerical procedure for the simulation of construction process and service life of RCC dams is presented. It takes into account the more relevant features of the behavior of concrete such as hydration, ageing and creep. A viscoelastic model, including ageing effects and thermal dependent properties is adopted for the concrete. The different isothermal temperature influence on creep and elastic modulus is taken into account by the maturity concept, and the influence of the change of temperature on creep is considered by introducing a transient thermal creep term. Crack index is used to assess the risk of occurrence of crack either at short or long term. This study demonstrates that, the increase of the elastic modulus has been accelerated due to the high temperature of hydration at the initial stage, and consequently stresses are increased.

Modeling of Long-term Temperature Dependent Expansion in Mass Concrete (온도의존적 장기팽창성 콘크리트의 해석모델)

  • Cha, Soo-Won;Jang, Bong-Seok;Bae, Sung-Geun;Jung, Woo-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.373-374
    • /
    • 2009
  • Three autogenous expansion model of MgO concrete are investigated in order to access their suitability in stress analysis which consider temperature and volume change due to hydration of cement and temperature dependent expansion of MgO.

  • PDF