1 |
Maekawa, K., Ishida, T. and Kishi, T. (2009), Multi-scale Modeling of Structural Concrete, Taylor & Francis, London and New York.
|
2 |
Meddah, M.S., Ismail, M.A., El-Gamal, S. and Fitriani, H. (2018), "Performances evaluation of binary concrete designed with silica fume and metakaolin", Constr. Build. Mater., 166, 400-412.
DOI
|
3 |
Murat, M. (1983), "Hydration reaction and hardening of calcined clays and related materials I. preliminary investigation on meta kaolinite", Cement Concrete Res., 13(2), 259-266.
DOI
|
4 |
Ngala, V.T. and Page, C.L. (1997), "Effects of carbonation on pore structure and Diffusional properties of hydrated cement pastes", Cement Concrete Res., 27(7), 995-1007.
DOI
|
5 |
Papadakis, V.G. (1999), "Experimental investigation and theoretical modeling of silica fume activity in concrete", Cement Concrete Res., 29(1), 79-86.
DOI
|
6 |
Papadakis, V.G. (2000), "Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress", Cement Concrete Res., 30(2), 291-299.
DOI
|
7 |
Papadakis, V.G. and Tsimas, S. (2005), "Greek supplementary cementing materials and their incorporation in concrete", Cement Concrete Compos., 27(2), 223-230.
DOI
|
8 |
Papadakis, V.G., Efstathiou, M.P. and Apostolopoulos, C.A. (2007), "Computer-aided approach of parameters influencing concrete service life and field validation", Comput. Concrete, 4(1), 1-18.
DOI
|
9 |
Poon, C.S., Lam, L., Kou, S.C., Wong, Y.L. and Wong, R. (2001), "Rate of pozzolanic reaction of metakaolin in high-performance cement pastes", Cement Concrete Res., 31(9), 1301-1306.
DOI
|
10 |
Saetta, A.V. and Vitaliani, R.V. (2004), "Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part I: theoretical formulation", Cement Concrete Res., 34(4), 571-579.
DOI
|
11 |
Saetta, A.V. and Vitaliani, R.V. (2005), "Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures, part II: practical applications", Cement Concrete Res., 35(5), 958-967.
DOI
|
12 |
Saillio, M., Baroghel-Bouny, V. and Pradelle, S. (2015), "Various durability aspects of calcined Kaolin-Blended portland cement pastes and concretes", Eds. K. Scrivener and A. Favier, Proceedings of 1st International Conference on Calcined Clays for Sustainable Concrete, 491-499.
|
13 |
Silva, A., Neves, R. and de Brito, J. (2014), "Statistical modelling of carbonation in reinforced concrete", Cement Concrete Compos., 50, 73-81.
DOI
|
14 |
Singh, G.A. and Siddique, R. (2017), "Strength and microstructural properties of self-compacting concrete containing metakaolin and rice husk ash", Constr. Build. Mater., 157, 51-64.
DOI
|
15 |
Tanaka, Y., Saeki, T., Sasaki, K. and Suda, Y. (2009). "Fundamental study on density of c-s-h", Cement Sci. Concrete Technol., 63(1), 70-76.
DOI
|
16 |
Thomas, P.H., Fabiana, G., Nicholas, H.F. and Paul, S.F. (2015), "Statistical analysis of the carbonation rate of concrete", Cement Concrete Res., 72, 98-107.
DOI
|
17 |
Wang, X.Y. and Lee, H.S. (2010), "Modeling the hydration of concrete incorporating fly ash or slag", Cement Concrete Res., 40(7), 984-996.
DOI
|
18 |
Badogiannis, E., Tsivilis, S., Papadakis, V. and Chaniotakis, E. (2002), "The effect of metakaolin on concrete properties", International Congress: Challenges of Concrete Construction. In Innovations and Developments in Concrete Materials and Construction, Eds. R.K. Dhir, P.C. Hewlett, and L.J. Cetenyi, Dundee, Scotland.
|
19 |
Wang, X.Y. and Park, K.B. (2017), "Analysis of the compressive strength development of concrete considering the interactions between hydration and drying", Cement Concrete Res., 102, 1-15.
DOI
|
20 |
Atis, C.D. (2004), "Carbonation-porosity-strength model for fly ash concrete", J. Mater. Civil Eng., 16(1), 91-94.
DOI
|
21 |
Bucher, R., Diederich, P., Escadeillas, G. and Cyr, M. (2017), "Service life of metakaolin-based concrete exposed to carbonation comparison with blended cement containing fly ash, blast furnace slag and limestone filler", Cement Concrete Res., 99, 18-29.
DOI
|
22 |
Frias, M. and Cabrera, J. (2000), "Pore size distribution and degree of hydration of metakaolin-cement pastes", Cement Concrete Res., 30(4), 561-569.
DOI
|
23 |
Houst, Y.F. and Wittmann, F.H. (1994), "Influence of porosity and water content on the diffusivity of and through hydrated cement paste", Cement Concrete Res., 24(6), 1165-1176.
DOI
|
24 |
Kadri, E. H., Kenai, S., Ezziane, K., Siddique, R. and De Schutter, G. (2011), "Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar", Appl. Clay Sci., 53(4), 704-708.
DOI
|
25 |
Kannan, V. (2018), "Strength and durability performance of self compacting concrete containing self-combusted rice husk ash and metakaolin", Constr. Build. Mater., 160, 169-179.
DOI
|
26 |
Khatib, J.M. and Wild, S. (1996), "Pore size distribution of metakaolin paste", Cement Concrete Res., 26(10), 1545-1553.
DOI
|
27 |
Kwon, S.J. and Song, H.W. (2010), "Analysis of carbonation behaviour in concrete using neural network algorithm and carbonation modelling", Cement Concrete Res., 40(1), 119-127.
DOI
|