• Title/Summary/Keyword: Hydration energy

Search Result 182, Processing Time 0.02 seconds

Absorption of Water by Husked and Naked Barley (겉보리 및 쌀보리의 수화속도)

  • Lee, Jong-Sook;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.220-224
    • /
    • 1983
  • The hydration of water, at $20^{\circ}\;30^{\circ}$ and $40^{\circ}C$ for 10-360 minutes, by the two varieties of husked barley and of naked barley which were polished to 40 and 30%, respectively, was investigated. The absorption was directly proportional to the square root of the hydration time and accounted for by the diffusion equation: 1-M = $(2/{\sqrt\pi})\;(S/V){\sqrt{Dt}}$, where 1-M is the relative moisture gain and S/V is the surface-to-volume ratio. The average diffusion coefficient (D) was given by the Arrhenius relation: D = $D_{0}\;exp\;(-Ea/RT)$, where the activation energy for both husked and naked barley was about 7.2 Kcal/mole. The average value of D for naked barley was slightly higher than that for husked barley.

  • PDF

Microscopic Analysis of Prefinitely Strained Cement Paste

  • Song, Ha-Won;Kim, Jang-Ho;Choi, Jae-Hyeok;Byun, Keun-Joo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.127-140
    • /
    • 1999
  • In this paper, a microscopic analysis of prefinitelv strained cement paste specimen was carried out. The microscopic behavior of concrete under triaxial stress must be fully understood in order to explain the additional ductilitv that comes from lateral confinement and to get microstructural information in large deformed and large strained concrete. The so-called "tube-squash" test was applied to achieve enormously high shear and deviatoric strain of concrete under extremly high pressure without fracture. Then, microscopic analyses by focusing on hydration and microstructure of Prefinitely strained cement paste were carried out on cored-out deformed and virgin (undeformed) cement paste specimens : the first specimen being 40 days old, the second one being one year old. The microscopic analysis bv Field Emission Scanning Electronic Microscope (FESEM) was carried out for comparison between the specimens after 40 days and those arter one year. For one year old specimens, X-Ray Diffractometer (XRD) analysis, Energy Dispersive x-rav Spectrometer (EDS) analysis, and Differential Thermal Analysis/Thermo-Gravitv (DTA/TG) analysis were also carried out to study the hydration and the microstructures of prefinitely strained cement paste specimen by focusing on the methodologies of their microscopic analyses. analyses.

  • PDF

A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete

  • P. Jagadesh;Karthik Prabhu ;Moutassim Charai;Ibrahim Y. Hakeem;Emrah Madenci;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.649-666
    • /
    • 2023
  • In the current scenario, conventional concrete faces a substantial challenge in the modern era of the construction industry. Today's structures are massive, featuring innovative designs and strict time constraints. Conventional concrete does not provide the required compressive strength, tensile strength, flexural strength, toughness, and cracking resistance. As a result, most of engineers and professionals prefer to use ultra-high-performance concrete (UHPC), based on its wide advantages. Several advantages like mechanical and durability properties of UHPC provides dominant properties than the traditional concrete. Mix proportions of UHPC consists of higher powder content which provides maximum hydration and pozzolanic reaction, thereby contributing to the enhancement of the UHPC properties. Apart from that the nanomaterials provides the filler behavior, which will further improve the density. Enhanced density and mechanical properties lead to improved durability properties against water absorption and other typical chemicals. Nanomaterials are the most adopted materials for various applications, ranging in size from 0.1 nanometers to 100 nanometers. This article explores the effects of nanomaterial application in UHPC as a replacement for cementitious material or as an additive in the UHPC mix. The physical and durability properties modifications and improvements of UHPC, as well as negative effects, limitations, and shortcomings, are also analyzed.

Comparison on the Energy Consumption of the Vacuum Evaporation and Hydrated-Based Technologies for Concentrating Dissolved Ions (용존 이온 농축을 위한 진공 증발 기술과 하이드레이트 기반 기술의 소모 에너지 비교)

  • Han, Kunwoo;Rhee, Chang Houn;Ahn, Chi Kyu;Lee, Man Su
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.378-386
    • /
    • 2019
  • In the present paper we report the calculation results of operation energy consumption for dissolved ions concentration technologies using vacuum evaporation (VE) and hydrate formation. Calculations were conducted assuming the tenfold concentration of saline water (0.35 wt% NaCl solution) of 1 mol/s at room temperature and atmospheric pressure employing vacuum evaporation at $69^{\circ}C$ and 30 kPa and hydrate-based concentration using $CH_4$, $CO_2$ and $SF_6$ as guest molecules. Operation energy consumption of VE-based concentration resulted in 47 kJ/mol, whereas those of hydrate-based concentration were 43, 32, and 28 kJ/mol for $CH_4$, $CO_2$ and $SF_6$ hydrates, respectively. We observe that hydrate-based concentration can a competitive option for dissolved ions recovery from energy consumption standpoint. However, the selection of guest gas is very critical, since it accordingly determines the hydration number, the hydrate formation energy, gas compression energy, etc. The selection of guest gas, separation of concentrated brine and water phases, and the enhancement of hydrate formation rate are the key factors for the commercialization of hydrated-based technology for concentrating dissolved ions.

Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

Adsorption and Separation of Ag(I) Using a Merrifield Resin Bound NTOE, NDOE in Aqueous Solution (수용액에서 NTOE, NDOE가 결합된 Merrifield 수지를 이용한 Ag(I)의 흡착 및 분리 특성)

  • Lee, Cheal-Gyu;Kim, Hae Joong
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • The adsorption and separation behaviors of transition metal ions using a merrifield resin bound 1,12-diaza-3,4:9,10-dibenzo-5,8-dioxacyclopentadecane (NTOE) and 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane(NDOE) were investigated in aqueous solution. The orders of adsorption degree(E) and distribution ratio(D) of transition metal ions were Cu(II)$t_R$) of metal ions were affected by adsorption degree(E) and distribution ratio(D). This results showed good separation efficiency of Ag(I) from mixed metal solution.

  • PDF

Kinetics and Stereochemistry for the Aquation of trans-$[Co(en)(tmd)Cl_2]^+$Cation (Trans-$[Co(en)(tmd)Cl_2]^+$ 錯이온의 水化反應에 對한 反應速度와 立體化學)

  • Jeong, Jong-Jae;Roh, Byung-Gil;Kim, Eun-Ki;Oh, Sang-Oh
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.607-611
    • /
    • 1991
  • The stereochemical ratio cis and trans isomer of the hydration reaction of trans-$[Co(en)(tmd)Cl_2]^+$ complex ion were studied with varing temperature by the spectrophotometric method. It was observed that the ratio of cis-isomer was about 30%, and the intermediate was rearranged. And in order to investigate this mechanism more clearly, stability energy profile, interaction diagram and orbital correlation diagram were calculated by the EHT method. By the calculation, the mechanism of cis-isomer was in good agreement with the experimental results, and it was estimated that the hydration reaction was carried through some distorted square pyramid (sp).

  • PDF

Ab initio Calculations of Protonated Ethylenediamine-(water)3 Complex: Roles of Intramolecular Hydrogen Bonding and Hydrogen Bond Cooperativity

  • Bu, Du Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.693-698
    • /
    • 2001
  • Ab initio density functional calculations on the structural isomers, the hydration energies, and the hydrogen bond many-body interactions for gauche-, trans-protonated ethylenediamine-(water)3 complexes (g-enH+(H2O)3, t-enH+(H2O)3) have been performed. The structures and relative stabilities of three representative isomers (cyclic, tripod, open) between g-enH+(H2O)3 and t-enH+(H2O)3 are predicted to be quite different due to the strong interference between intramolecular hydrogen bonding and water hydrogen bond networks in g-enH+(H2O)3. Many-body analyses revealed that the combined repulsive relaxation energy and repulsive nonadditive interactions for the mono-cyclic tripod isomer, not the hydrogen bond cooperativity, are mainly responsible for the greater stability of the bi-cyclic isomer.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

Water Absoption of Stored Brown Rice in Laminated Film Pouch (플라스틱 적층필름 포장재를 이용한 현미의 저장중 수분흡수 특성 변화)

  • Han, Jae-Gyoung;Kang, Kil-Jin;Kim, kwan;Kim, Seong-Kon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.643-648
    • /
    • 1996
  • The changes in hydration of brown rice, Chu-chung byeo(Japonica type) were determined during storage at different storage temperatures($4^{\circ}C$, 2$0^{\circ}C$, 3$0^{\circ}C$ and 4$0^{\circ}C$) in a 4-layered laminated film pouch(PET 12${\mu}{\textrm}{m}$/AI-foil 7${\mu}{\textrm}{m}$/o-Nylon 15${\mu}{\textrm}{m}$/L-Mix100${\mu}{\textrm}{m}$). At the beginning of storage, the hydration rate of brown rice increased with higher soaking temperature, and the activation energy of hydration was 10.3kcal/mole. Water diffusion coefficient of brown rice due to storage temperature during storage at 3$0^{\circ}C$ of soaking temperature was decreased by the elapse of storage periods and increment of storage temperature(below 3$0^{\circ}C$). ).

  • PDF