• Title/Summary/Keyword: Hydration energy

Search Result 182, Processing Time 0.019 seconds

High Temperature Thermodynamics of Aqueous electrolyte Solutions (전해질 수용액의 고온 열역학)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.63-67
    • /
    • 2018
  • Gibbs free energy is a measure of relative stability among substances. Since the nature of the ions in aqueous solution is diverse, their thermodynamic data at extensive experimental conditions is scarce. In this work, the calculation procedure was introduced to obtain the absolute and conventional standard molar enthalpies and entropies of hydration of ions from the standard enthalpies and entropies of formation of hydrated ions. The application of correspondence principle to estimate thermodynamic data at high temperature was explained.

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Properties of Shrinkage Reducing Agent and Mortar with C12A7-based Slag and Petroleum Cokes Ash (C12A7계 슬래그와 석유 코크스 연소재를 사용한 수축저감재 및 모르타르의 특성)

  • Chu, Yong Sik;Park, Soo Hyun;Seo, Sung Kwan;Park, Jae Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.319-325
    • /
    • 2013
  • In this study, petroleum cokes ash and $C_{12}A_7$-based slag were used for the shrinkage reduction and strength enhancement of mortar. The hydration properties of shrinkage reduction agents were analysed. The flow, change of length and compressive strength were experimented with mortar-added shrinkage reduction agents. As a result of this study, petroleum cokes ash : $C_{12}A_7$-based slag = 60~80% : 20~40% showed excellent results. In the case of mortar with 20% $C_{12}A_7$-based slag, the setting time and change of length were similar to Ref. mortar. The flow and compressive strength were superior to Ref. mortar. In the case of mortar with a 40% $C_{12}A_7$-based slag, the setting time was longer than Ref. mortar. The compressive strength of 3 days and 7 days were superior to Ref. mortar.

Factors Affecting Hydration Rate of Black Soybeans (검정콩의 흡수속도(吸水速度)에 미치는 영향인자)

  • Kim, Woo-Jung;Shin, Ea-Sook;Kim, Chong-Kun;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-44
    • /
    • 1985
  • Dried black soybeans were soaked in water at the temperature range of $4^{\circ}C-100^{\circ}C$ and in the solution having various concentration of salt and sugar, in order to investigate their effects on water absorption characteristics. The hydration rate was determined by the method of weight gain during soaking. The times required to reach specified degrees of hydration were reduced logarithmically by increase of temperature, with showing a break point in their Z-values at $60^{\circ}C$. The temperature effect on hydrations of black soybeans was higher at the temperature below $60^{\circ}C$. Increase of NaCl or sucrose concentration in soaking solution reduced the hydration rate. The Z-values were changed at the concentration of 25% for sucrose and 16% for NaCl. The activation energy for hydration of 30%-50% was found to be 5.7-7.2Kcal/mole. The higher activation energy was required to reach higher degree of hydration.

  • PDF

Kinetic Studies on Hydration of Traditional and High-Yielding Rice Varieties (일반쌀 및 다수확 쌀의 수화속도)

  • Lee, Soon-Ock;Kim, Sung-Kon;Lee, Sang-Kyu
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 1983
  • The hydration of two japonica(Akibare and Milyang 15) and four indica(Milyang 30, Suweon 287, Suweon 294 and Iri 342) rice varieties was investigated in terms of mathematical rate equation. The hydration rate at temperatures of $4{\sim}32^{\circ}C$ was examined by a weighing method. The absorption of water was directly proportiponal to the square root of the hydration time(t) and was described by the diffusion equation: $1-\bar{M}=(2/\sqrt{\pi})(S/V)\;\sqrt{Dt},\;where\;\bar{M}$ is dimensionless moisture ratio, S/V is the surface-to-volume ratio and D is diffusion coefficient. The average D value was given by the Arrhenius relation: $D=D_0\;\exp(-E_a/TR)$. The activation energy was $4{\sim}5kcal/mole$. The rice samples could be classified into three groups based on hydration kinetics: Milyang 30-Suweon 287; Akibare-Milyang 15; and Suweon 294-Iri 342.

  • PDF

Interfacial Evaluation of Surface Treated Jute Fiber/Polypropylene Composites Before and After Hydration Using Micromechanical Test (미세역학적 시험법을 이용한 표면처리된 Jute 섬유 강화 폴리프로필렌 복합재료의 수화 전·후 계면물성 평가)

  • Kim, Pyung-Gee;Jang, Jung-Hoon;Park, Joung-Man;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • The interfacial evaluation of surface modified Jute fiber/polypropylene (PP) composites before and after hydration was investigated using micromechanical test and dynamic contact angle measurement. The IFSS of alkaline and silane-treated Jute fiber/PP composites increased, whereas after hydration, the IFSS of the untreated, alkaline- and silane-treated Jute fibers/PP composites decreased due to swelled fibrils by water infiltration. The interfacial adhesion of silane treated fiber/PP composites was higher than alkaline-treated or the untreated cases. The surface energies of Jute fiber treated under various conditions were obtained using dynamic contact angle measurement. Especially after hydration, the thermodynamic work of adhesion was calculated by considering water interlayer, which indicated the stability of IFSS between silane treated Jute fiber and PP matrix showing better than others.

  • PDF

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.

Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$ (Sulfated $ZrO_2$를 함침한 SPAES 연료전지막의 특성 평가)

  • Kim, Mi-Nai;Choi, Young-Woo;Kim, Tae-Young;Lee, Mi-Soon;Kim, Chang-Soo;Yang, Tae-Hyun;Nam, Ki-Seok
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.