• Title/Summary/Keyword: Hybrid-Model

Search Result 2,564, Processing Time 0.031 seconds

The Development of Hybrid Model and Empirical Study for the Several Inductive Approaches (여러 가지 Inductive 방법에 대한 통합모델 개발과 그 실증적 유효성에 대한 연구)

  • 김광용
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.185-207
    • /
    • 1998
  • This research investigates computer generated hybrid second-order model of two numerically based approaches to risk classification : discriminant analysis and neural networks. The hybrid second-order models are derived by rule induction using the ID3 and tested in the several different kinds of data. This new hybrid approach is designed to combine the high prediction accuracy and robustness of DA or NN with perspicuity of ID3. The hybrid model also eliminates the problem of contradictory inputs of ID3. After doing empirical test for the validity of hybrid model using small and medium companies' bankrupt data, hybrid model shows high perspicuity, high prediction accuracy for bankrupt, and simplicity for rules. The hybrid model also shows high performance regardless the type of data such as numeric data, non-numeric data, and combined data.

  • PDF

Hybrid Model Based Intruder Detection System to Prevent Users from Cyber Attacks

  • Singh, Devendra Kumar;Shrivastava, Manish
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.272-276
    • /
    • 2021
  • Presently, Online / Offline Users are facing cyber attacks every day. These cyber attacks affect user's performance, resources and various daily activities. Due to this critical situation, attention must be given to prevent such users through cyber attacks. The objective of this research paper is to improve the IDS systems by using machine learning approach to develop a hybrid model which controls the cyber attacks. This Hybrid model uses the available KDD 1999 intrusion detection dataset. In first step, Hybrid Model performs feature optimization by reducing the unimportant features of the dataset through decision tree, support vector machine, genetic algorithm, particle swarm optimization and principal component analysis techniques. In second step, Hybrid Model will find out the minimum number of features to point out accurate detection of cyber attacks. This hybrid model was developed by using machine learning algorithms like PSO, GA and ELM, which trained the system with available data to perform the predictions. The Hybrid Model had an accuracy of 99.94%, which states that it may be highly useful to prevent the users from cyber attacks.

PRICING OF VULNERABLE POWER EXCHANGE OPTION UNDER THE HYBRID MODEL

  • Jeon, Jaegi;Huh, Jeonggyu;Kim, Geonwoo
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.567-576
    • /
    • 2021
  • In this paper, we deal with the pricing of vulnerable power exchange option. We consider the hybrid model as the credit risk model. The hybrid model consists of a combination of the reduced-form model and the structural model. We derive the closed-form pricing formula of vulnerable power exchange option based on the change of measure technique.

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity (하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석)

  • Kang, Min Jae;Jung, Jae Hwan;Cho, Seok Kyu;Hur, Jea-Wook;Kim, Sanghyeon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

Numerical and Experimental Study on Spray Atomization Characteristics of GDI Injector (직접 분사식 가솔린 기관 인젝터의 분무 미립화 특성에 대한 해석 및 실험적 연구)

  • Lee, C.S.;Rhyu, Y.;Kim, H.J.;Park, S.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2002
  • In this study numerical and experimental study on the spray atomization characteristics of a GDI injector is performed. To carry out numerical analysis, four hybrid models that are composed of conical sheet disintegration model, LISA model, DDB model, and RT model are used. The experimental results to evaluate the prediction accuracy of hybrid models are obtained by using phase Doppler particle analyzer and spray visualization system. It is shown that the prediction accuracy of hybrid model concerning spray developing process and spray tip penetration is good for all hybrid models, but the hybrid breakup models show different prediction of accuracy in the case of local radial SMD distribution.

  • PDF

Model updating with constrained unscented Kalman filter for hybrid testing

  • Wu, Bin;Wang, Tao
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1105-1129
    • /
    • 2014
  • The unscented Kalman filter (UKF) has been developed for nonlinear model parametric identification, and it assumes that the model parameters are symmetrically distributed about their mean values without any constrains. However, the parameters in many applications are confined within certain ranges to make sense physically. In this paper, a constrained unscented Kalman filter (CUKF) algorithm is proposed to improve accuracy of numerical substructure modeling in hybrid testing. During hybrid testing, the numerical models of numerical substructures which are assumed identical to the physical substructures are updated online with the CUKF approach based on the measurement data from physical substructures. The CUKF method adopts sigma points (i.e., sample points) projecting strategy, with which the positions and weights of sigma points violating constraints are modified. The effectiveness of the proposed hybrid testing method is verified by pure numerical simulation and real-time as well as slower hybrid tests with nonlinear specimens. The results show that the new method has better accuracy compared to conventional hybrid testing with fixed numerical model and hybrid testing based on model updating with UKF.

Development of High-Precision Hybrid Geoid Model in Korea (한국의 고정밀 합성지오이드 모델 개발)

  • Lee, Dong-Ha;Yun, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid which were presented the local vertical level. Therefore, it is necessary to find firstly the optimal scheme for improving the accuracy of gravimetric geoid in order to development the high-precision hybrid geoid model. Through finding the optimal scheme for determining the each part of gravimetric geoid, the most accurate gravimetric geoid model in Korea will be developed when the EIGEN-CG03C model to degree 360, 4-band spherical FFT and RTM reduction methods were used for determining the long, middle and short-frequency part of gravimetric geoid respectively. Finally, we developed the hybrid geoid model around Korea by correcting to gravimetric geoid with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. 503 GPS/Levelling data were used to model the correction term. The degree of LSC fitting to the final hybrid geoid model in Korea was evaluated as 0.001m ${\pm}0.054m$.

  • PDF

Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model

  • Del Castillo, Manuelito Y. Jr.;Song, Hwachang;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.464-471
    • /
    • 2013
  • This paper proposes a hybrid searching algorithm based on parameter identification for power system load models. Hybrid searching was performed by the combination of particle swarm optimization (PSO) and a complex method, which enhances the convergence of solutions closer to minima and takes advantage of global searching with PSO. In this paper, the load model of interest is composed of a ZIP model and a third-order model for induction motors for stability analysis, and parameter sets are obtained that best-fit the output measurement data using the hybrid search. The origin of the hybrid method is to further apply the complex method as a local search for finding better solutions using the selected particles from the performed PSO procedure.

Analytical study on hydrodynamic motions and structural behaviors of hybrid floating structure

  • Jeong, Youn-Ju;Lee, Du-Ho;Park, Min-Su;You, Young-Jun
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-53
    • /
    • 2013
  • In this study, a hybrid floating structure with cylinder was introduced to reduce the hydrodynamic motions of the pontoon type. The hybrid floating structure is composed of cylinders and semi-opened side sections to penetrate the wave impact energy. In order to exactly investigate the hydrodynamic motions and structural behavior of the hybrid floating structure under the wave loadings, integrated analysis of hydrodynamic and structural behavior were carried out on the hybrid floating structure. Firstly, the hydrodynamic analyses were performed on the hybrid and pontoon models. Then, the wave-induced hydrodynamic pressures resulting from hydrodynamic analysis were directly mapped to the structural analysis model. And, finally, the structural analyses were carried out on the hybrid and pontoon models. As a result of this study, it was learned that the hybrid model of this study was showed to have more favorable hydrodynamic motions than the pontoon model. The surge motion was indicated even smaller motion at all over wave periods from 4.0 to 10.0 sec, and the heave and pitch motions indicated smaller motions beyond its wave period of 6.5 sec. However, the hybrid model was shown more unfavorable structural behavior than the pontoon model. High concentrated stress occurred at the bottom slab of the bow and stern part where the cylinder wall was connected to the bottom slab. Also, the hybrid model behaved with the elastic body motion due to weak stiffness of floating body and caused a large stress variation at the pure slab section between the cylinder walls. Hence, in order to overcome these problems, some alternatives which could be easily obtained from the simple modification of structural details were proposed.