• 제목/요약/키워드: Hybrid-GA Algorithm

검색결과 168건 처리시간 0.022초

전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어 (Fuzzy control designed GA of a electro-rheology fluid damper)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

GA 기반 퍼지 제어기의 설계 및 트럭 후진제어 (A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control)

  • 곽근창;김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.

다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델 (A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA))

  • 무하마드 임란;강창욱
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링 (Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms)

  • 노희룡;최슬비;안현철
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.19-38
    • /
    • 2017
  • 본 연구는 사용자 평점 이외에 사용자 간 직접 간접적 신뢰 및 불신 관계 네트워크의 분석 결과를 추가로 반영한 새로운 하이브리드 협업필터링(Collaborative filtering, CF) 추천방법을 제안한다. 구체적으로 사용자 간의 유사도를 계산할 때 사용자 평가점수의 유사성만을 고려하는 기존의 CF와 다르게, 사용자 신뢰 및 불신 관계 데이터의 사회연결망분석 결과를 추가적으로 고려하여 보다 정교하게 사용자 간의 유사도를 산출하였다. 이 때, 사용자 간의 유사도를 재조정하는 접근법으로 특정 이웃 사용자가 신뢰 및 불신 관계 네트워크에서 높은 신뢰(또는 불신)를 받을 때, 추천 대상이 되는 사용자와 해당 이웃 간의 유사도를 확대(강화) 또는 축소(약화)하는 방안을 제안하고, 더 나아가 최적의 유사도 확대 또는 축소의 정도를 결정하기 위해 유전자 알고리즘(genetic algorithm, GA)을 적용하였다. 본 연구에서는 제안 알고리즘의 성능을 검증하기 위해, 특정 상품에 대한 사용자의 평가점수와 신뢰 및 불신 관계를 나타낸 실제 데이터에 추천 알고리즘을 적용하였으며 그 결과, 기존의 CF와 비교했을 때 통계적으로 유의한 수준의 예측 정확도 개선이 이루어짐을 확인할 수 있었다. 또한 신뢰 관계 정보보다는 불신 관계 정보를 반영했을 때 예측 정확도가 더 향상되는 것으로 나타났는데, 이는 사회적인 관계를 추적하고 관리하는 측면에서 사용자 간의 불신 관계에 대해 좀 더 주목해야 할 필요가 있음을 시사한다.

하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계 (Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System)

  • 장성대;지평식
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong;Kim Yong-Han;Yang Bo-Suk;Ahn Kyoung-Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1125-1138
    • /
    • 2006
  • The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.

순환형 공급체인 환경에서 시설 통합에 의한 물류원가 절감 및 재고관리시스템 모델구축에 관한 연구 (Study on Reducing Logistics Costs and Inventory Control System according to facilities integration in the Closed-Loop Supply Chain Environment)

  • 이정은
    • 한국산업정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.81-90
    • /
    • 2014
  • 순방향물류와 역방향물류의 두 물류 체인을 통합해서 자원 순환형 공급체인 (CLSC: closed-loop supply chain) 을 구성하는 것은 기업의 비용절감을 위해서 반드시 필요한 요소이다. 본 연구에서는 순환형 공급체인의 환경에서 순방향물류의 도매점과 역방향물류의 처리센터의 재고를 통합하는 재고관리를 제안한다. JIT(Just-in-Time)배송이 고려된 새로운 CLSC 재고관리모델은, 회수센터에서 처리센터로 배송된 사용이 끝난 제품이 도매업자의 수요에 미치지 못할 때 제조사에게 필요한 제품을 재발주 할 것이지 사용이 끝난 제품의 회수를 기다릴 것이지를 선택함으로써 비용을 절감한다. 제안 모델의 유효성을 검증하기 위하여 최적화 기법중 하나인 유전자 알고리즘(Genetic Algorithm: GA)을 이용하였다. 파라미터가 해에 미치는 영향을 알아보기 위해서 세 가지 파라미터 조건에서 우선 순위형 GA (priority-based GA: priGA)와, 각 세대마다 파라미터가 조정되는 개량형 하이브리드 GA (modified Hybrid Genetic Algorithm: mhGA)를 사이즈가 다른 4가지 수치 예에 적용하여 시뮬레이션을 실시하였다.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.