• Title/Summary/Keyword: Hybrid water supply system

Search Result 40, Processing Time 0.027 seconds

Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment (공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home (제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

Determination of the Optimal Location for Water Treatment Plants in the Decentralized Water Supply System (분산형 용수공급시스템 구축을 위한 정수처리시설 최적 위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kim, Jeong-Hyun;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Major issues in water supply service have changed from expansion of service area to improvement of service quality, i.e., water quality and safety, and early response to emergency situation. This change in the service concept triggers the perceptions of limitation with the current centralized water supply system and of necessities of decentralized (distributed) water supply system (DWSS), which can make up the limitations. DWSS can reduce the possibility of water supply outage by establishing multiple barriers such as emergency water supply system, and secure better water quality by locating treatment facilities neighboring consumers. On the other hand, fluctuation of water demand will be increased due to the reduced supply area, which makes difficult to promptly respond the fluctuating demand. In order to supplement this, hybrid water supply system was proposed, which combined DWSS with conventional water supply system using distributing reservoir to secure the stability of water supply. The Optimal connection point of DWSS to existing water supply network in urban area was determined by simulating a supply network using EPANET. Optimal location of decentralized water treatment plant (or connection point) is a nodal point where changes in pressure at other nodal points can be minimized. At the same time, the optimal point should be selected to minimize hydraulic retention time in supply network (water age) to secure proper water quality. In order to locate the point where these two criteria are satisfied optimally, Distance measure method, one of multi-criteria decision making was employed to integrate the two results having different dimensions. This methodology can be used as an efficient decision-support criterion for the location of treatment plant in decentralized water supply system.

Feasibility Study on Introduction of Decentralized Water Supply System for Improving Water Security and Sustainability (물안보 및 지속가능성 제고를 위한 분산형 용수공급시스템의 도입 타당성에 관한 연구)

  • Kim, Kwan-Yeop;Kim, Seong-Su;Park, No-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2014
  • Decentralized water supply systems, treating the water in users'vicinity, cutting down the distribution system, utilizing the alternative water resources(rainwater harvesting, water reclamation and reuse and so on.) and saving energy and other resources, could be categorized into POU(Point-Of-Use), POE(Point-Of-Entry) and community small scale system. From the literature review, we could thought that decentralized water supply system and hybrid system(integrating centralized and decentralized water supply system within urban water management) might have strengthening comparative advantages to centralized system with respect to: (1) water security, (2) sustainability, (3) economical affordability. Even though it is difficult to derive and quantify direct benefit advantages from decentralized and hybrid system in comparison with centralized system, (1) operational cost reduction, (2) assurance for safe and stability water supply and (3) greenhouse gas reduction can be expected from successful establishment of the former.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

A Study on the Operating Performance of Solar Assisted Hot Water System for Apartment Houses (공동주택용 태양열원 급탕시스템의 운전성능 연구)

  • 이윤규;황인주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.928-936
    • /
    • 2003
  • In the present study, feasibility investigation on the solar assisted hot water supply system for apartment houses was carried out by the review of service facility and heat load pattern. Also analysis and experiment of the small sized system model were performed. This hybrid system are consists of solar collector, heat storage tank, controller, and gas boiler using LPG as a secondary heat source. The analytical results showed a good agreement with experimental data. We found that this hybrid system could reduce the energy cost by 30% for hot water compared to typical boiler system in the apartment houses. Also we showed that this model could be used for the energy and economic analysis of the hybrid system.

Modularization and Application of Hybrid Renewable Energy Process in Seosan Area (서산 지역에서의 혼합 신재생에너지 공정의 모듈화 및 적용 연구)

  • JEONG SOO AHN;MIN HYEONG KANG;CHEON KIM;KYEONG SIK SEO;SEUNG HYEON KWAK;YU JIN CHOI;TAE JIN PARK;JAE CHEOL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.212-225
    • /
    • 2023
  • This study presents a modularized process of a hybrid renewable energy system that combines photovoltaic power and wind power to supply stable power in a unit area (1 km2). The water electrolysis process and fuel cells process also contributes to the supply of the stable power. The entire system can constantly supply power of 4.39 MW/km2. Actual meteorological data is used for simulation.

Development of Portable Hybrid Water Purifier System (재난·재해용 포터블 하이브리드 정수시스템 개발)

  • Ryu, Ji-Hyeob;Choi, Rang-Kyu;Park, Hun
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.47-55
    • /
    • 2010
  • It was developing of portable hybrid water purification system for clean water production in the disaster area. because there are no way to supply a drinking water to the victims of calamity. currently, the government has been supplying bottled water to victims. but it is a limit to the reserves. It is composed of a filter, a feed pump, a solar-cell, a controller, and a case and is possible supplying a drinking water not to limit time and a place. Field test was carried out to developed portable water purification system and the purified water was satisfied a criterion for a drinking water.

  • PDF

Development of WT-FC Hybrid System for Off-Grid (오프그리드용 풍력-연료전지 하이브리드 시스템 개발)

  • Choi, Jong-Pil;Kim, Kwang-Soo;Park, Nae-Chun;Kim, Sang-Hun;Kim, Byeong-Hee;Yu, Neung-Su
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.60-67
    • /
    • 2007
  • This paper describes the design and integration of the wind-fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), hydrogen storage tank and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. Hydrogen may be produced and stored in high pressure tank by hydrogen gas booster system. Wind conditions are changing with time of day, season and year. So, wind power is a variable energy source. The main purpose with these WT-FC hybrid system is to store hydrogen by electrolysis of water when wind conditions are good and release the stored hydrog en to supply the fuelcell when wind is low.

  • PDF

A Study for Correlativity of Hydrogen Production Using Artificial Luminous Intensity (인공조도를 이용한 수소발생량과의 상관성에 관한 연구)

  • Jung, You-Ra;Hong, Chang-Woo;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.218-221
    • /
    • 2010
  • This paper presents energy efficiency about an electrolyser which is related with the hybrid system of solar cell and fuel cell for using the system more fully. The water electrolyser is the exact reverse of a hydrogen fuel cell; it produces gaseous hydrogen and oxygen from water. Electrolyser technology may be implemented at a variety of scales wherever there is an electricity supply to provide hydrogen and/or oxygen for virtually any requirement. Also, this paper shows optimum operating point in the electrolyser for saving cost of the electrical energy with hybrid system.