• Title/Summary/Keyword: Hybrid solar cell

Search Result 133, Processing Time 0.027 seconds

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

A study on the Power Characteristics of Hybrid Power System by Active Power Management (능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구)

  • Lee, Bohwa;Park, Poomin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.833-841
    • /
    • 2016
  • The 200 W electrically powered unmanned aerial vehicle, which is studied in this research, uses solar cells, a fuel cell and batteries as the main power source simultaneously. The output of each power source performs power control for each power source by the active power control method so that an adequate capacity of the battery could be maintained while limiting the maximum output of the fuel cell. The output variation for each power source under the active power control method was identified through an integrated ground test. In addition, the effect of limiting the maximum output of the fuel cell on the output variation of the entire system was experimentally identified, and it was confirmed that the adequate maximum output value of the fuel cell for preventing the overdischarge of six series-connected, small size batteries for fuel cell systems is 150 W.

Transparent TIO/Ag NW/TIO Hybrid Electrode Grown on PET for Flexible Organic Solar Cell

  • Seo, Ki-Won;Lee, Ju-Hyun;Na, Seok-In;Kim, Han-ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.394.2-394.2
    • /
    • 2014
  • We fabricated highly transparent and flexible Ti doped In2O3 (TIO)/Ag nanowire(NW)/TIO (TAT) multilayer electrodes by linear facing target sputtering (LFTS) and brush-painting for used as flexible for anode organic solar cells(FOSCs). The characteristics of TAT transparent anode as a function of number of brush-painting cycles was also investigated. At optimized conditions we achieved highly flexible TAT multilayer electrodes with a low sheet resistance of $9.01{\Omega}/square$ and a high diffusive transmittance more than 80% in visible region as well as superior mechanical stability. The effective embedment of the Ag NW network between top and bottom TIO films led to a metallic conductivity, high transparency. Based on FE-SEM HRTEM, and XRD analysis, we can find that the Ag NW network was effectively embedded between top and bottom TIO layers due to good flexibility of Ag NW, the TAT multilayer showed superior flexibility than single TIO layer. Successful operation of FOSCs with high power conversion efficiency of 3.01% indicates that TAT hybrid electrode is a promising alternative to conventional ITO electrode for high performance FOSCs.

  • PDF

Degradation and Stability of Organic-Inorganic Perovskite Solar Cells (유 무기 페로브스카이트 태양전지의 열화와 안정성)

  • Cho, Kyungjin;Kim, Seongtak;Bae, Soohyun;Chung, Taewon;Lee, Sang-won;Lee, Kyung Dong;Lee, Seunghun;Kwon, Guhan;Ahn, Seh-Won;Lee, Heon-Min;Ko, Min Jae;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.68-79
    • /
    • 2016
  • The power conversion efficiency of perovskite solar cells has remarkably increased from 3.81% to 22.1% in the past 6 years. Perovskite solar cells, which are based on the perovskite crystal structure, are fabricated using organic-inorganic hybrid materials. The advantages of these solar cells are their low cost and simple fabrication procedure. Also, they have a band gap of about 1.6 eV and effectively absorb light in the visible region. For the commercialization of perovskite solar cells in the field of photovoltaics, the issue of their long term stability cannot be overlooked. Although the development of perovskite solar cells is unprecedented, their main drawback is the degradation of the perovskite structure by moisture. This degradation is accelerated by exposure to UV light, temperature, and external bias. This paper reviews the aforesaid reasons for perovskite solar cell degradation. We also discuss the research directions that can lead to the development of perovskite solar cells with high stability.

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Characterization of effects of cadmium selenide on the performance of poly(3-hexylthiophehe):[6,6]-phenyl $C_{61}$ butyric acid methyl ester organic solar cells (Cadmium selenide 영향에 따른 poly(3-hexylthiophehe):[6,6]-phenyl $C_{61}$ butyric acid methyl ester 유기태양전지 특성 분석)

  • Choi, Mijung;Park, Eungkyu;Yeon, Ik-Jun;Ko, Sung Sik;Kim, Yong-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • We studied the performance of CdSe nanoparticle in the active layer of organic photovoltaics (OPVs) by changing concentration of the CdSe NPs in the P3HT:PCBM layer. We observed that the absorption peak value gradually increases with the increasing amount of CdSe NPs at 600nm wave length. However, the electrical properties of OPVs correspond less with the tendency of UV/visible result. The highest performance was shown with 10% of CdSe NPs. The device performance decreased after 10% of CdSe NPs, this shows the dependencies of performanc of hybrid solar cells on the CdSe NPs loading amount. The resulting OPVs with 10 % of CdSe NPs show a short circuit current density ($J_{sc}$) of $6.96mA/cm^2$, open circuit voltage ($V_{oc}$) of 0.61V, fill factor (FF) of 0.59, and power conversion efficiency (PCE) of 2.53% under AM 1.5 ($100mW/cm^2$).

  • PDF

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Band gap control by tri-block nanoribbon structure of graphene and h-BN

  • Lee, Ji-U;Jeong, Ga-Un
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.324-329
    • /
    • 2015
  • First-principles investigations on the hybrid one dementional hexagonal hybrboron-nitride nano ribbons (BNNRs) with a armchair graphene nano-ribbons(AGRNRs), are presented. Electronics properties of the mixed armchair BNC nano-ribbon (BNCNRs) structure show control of a band gap on all cases at the special K-point. And we have studied, the band gap is direct in all cases. The band gap of mixed ABNCNRs could be divided into three groups (${\Delta}3p$, ${\Delta}3p+1$ and ${\Delta}3p+2$) and decrease with the increase of the width. Also these results show similar to the AGNRs case. Different from the band gap value ordering of AGNRs (${\Delta}3p+1$ > ${\Delta}3p$ > ${\Delta}3p+2$), the ordering of ABNCNRs is ${\Delta}3p$ > ${\Delta}3p+1$ > ${\Delta}3p+2$. The discrepancy may come from the differences between the edges of AGRNRs and the boundaries of hybrid BNCNRs. In addition, the bandgap of ABNCNRs are much smaller than those of the corresponding AGNRs. Our results show that the origin of band gap for BNCNRs with armchair shaped edges arises from both quantum confinement effect of the edges. These results similar to thecase of AGNRs. These properties of hybrid BN/C nano-ribbon structure may offer suitable bandgap to develop nnanoscale electronics and solar cell beyond individual GNRs and BNNRs.

  • PDF

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.