• Title/Summary/Keyword: Hybrid roll

Search Result 48, Processing Time 0.021 seconds

Chemical Sensors Using Polymer/Graphene Composite and The Effect of Graphene Content on Sensor Behavior (고분자/그래핀 복합재료의 센서 응용 및 그래핀 함량이 센서 거동에 미치는 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • In this study, a polymer/graphene hybrid composite was prepared by a simple roll-method and a simple sensor was produced by a convenient surface engineering procedure. The sensor performance was examined and the effect of graphene content on the sensing behavior was monitored. A polymer (polydimethylsiloxane, PDMS) paste containing graphene powder was prepared by a three-roll apparatus and polymer/graphene hybrid composite was produced by a two-roll technique. The sensing medium, cyclodextrin (CD) was introduced by a convenient bio-conjugation method. The efficacy of surface modification was confirmed by FT-IR spectroscopy and the ohmic relation was observed on composite surfaces. An analyte (e.g., methyl paraben, MePRB) at a 10 nM concnetration could be detected. When the graphene loading was low, the sensor performance was relatively poor. This was attributed to the absence of graphene alignments, which were observed for the composites having a high graphene loading. This indicates that the sensor performance was influenced by physical alignments of the filler. This article can provide important information for future research on developing sensing devices.

Solving Survival Gridworld Problem Using Hybrid Policy Modified Q-Based Reinforcement

  • Montero, Vince Jebryl;Jung, Woo-Young;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1150-1156
    • /
    • 2019
  • This paper explores a model-free value-based approach for solving survival gridworld problem. Survival gridworld problem opens up a challenge involving taking risks to gain better rewards. Classic value-based approach in model-free reinforcement learning assumes minimal risk decisions. The proposed method involves a hybrid on-policy and off-policy updates to experience roll-outs using a modified Q-based update equation that introduces a parametric linear rectifier and motivational discount. The significance of this approach is it allows model-free training of agents that take into account risk factors and motivated exploration to gain better path decisions. Experimentations suggest that the proposed method achieved better exploration and path selection resulting to higher episode scores than classic off-policy and on-policy Q-based updates.

Development of Sleeve Parts for Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel

  • Park, Dong-Hwan;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2017
  • Metal casting is a process in which molten metal or liquid metal is poured into a mold made of sand, metal, or ceramic. The mold contains a cavity of the desired shape to form geometrically complex parts. The casting process is used to create complex shapes that are difficult to make using conventional manufacturing practices. For the optimal casting process design of sleeve parts, various analyses were performed in this study using commercial finite element analysis software. The simulation was focused on the behaviors of molten metal during the mold filling and solidification stages for the precision and sand casting products. This study developed high-life sleeve parts for the sink roll of continuous hot-dip galvanizing equipment by applying a wear-resistant alloy casting process.

Large-Scale Graphene Production Techniques for Practical Applications

  • Bae, Sukang;Lee, Seoung-Ki;Park, Min
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.79-85
    • /
    • 2018
  • Many studies have been conducted on large-scale graphene synthesis by chemical vapor deposition. Furthermore, numerous researchers have attempted to develop processes that can continuously fabricate uniform and high-quality graphene. To compete with other types of carbon materials (carbon black, carbon fiber, carbon nanotubes, and so on), various factors, such as price, mass manufacturing capability, and quality, are crucial. Thus, in this study, we examine various large-scale graphene production methods focusing on cost competitiveness and productivity improvements for applications in various fields.

The Biological Functionality of Electro-Galvanized Steels Coated with a Hybrid Composite Containing Pyrethroid

  • Jo, Du-Hwan;Kim, Myung-Soo;Kim, Jong-Sang;Oh, Hyun-Woo
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • The electronic industries require environmentally-friendly and highly functional materials to enhance the quality of human life. Home appliances require insect repellent steels that work to protect household microwave ovens from incurring damage by insects such as fire ants and cockroaches in tropical regions. Thus, POSCO has developed new types of functional steels, coated with an array of organic-inorganic hybrid composites on the steel surface, to cover panels in microwave ovens and refrigerators. The composite solution uses a fine dispersion of hybrid solution with polymeric resin, inorganic and a pyrethroid additive in aqueous media. The hybrid composite solution coats the steel surface, by using a roll coater and is cured using an induction curing furnace on both the continuous galvanizing line and the electro-galvanizing line. The new steels were evaluated for quality performances, salt spray test for corrosion resistance and biological performance for both insect repellent and antimicrobial activity. The new steels with organic-inorganic composite coating exhibit extraordinarily biological functionalities, for both insect repellent and antimicrobial activities for short and long term tests. The composite-coating solution and experimental results are discussed and suggest that the molecular level dispersion of insecticide on the coating layer is key to biological functional performances.

UV/Thermal Hybrid Nanoimprint System for Flexible Substrates (유연기판을 위한 UV/Thermal 하이브리드방식 나노임프린트 시스템)

  • Lim, Hyung-Jun;Lee, Jae-Jong;Choi, Kee-Bong;Kim, Gee-Hong;Ahn, Hyun-Jin;Ryu, Ji-Hyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.245-250
    • /
    • 2011
  • An UV/thermal hybrid nanoimprint lithography system was designed and implemented for the pattern transfer to flexible substrates. This system can utilize a plate stamp, roll stamp, and film stamp. For all cases of using those stamps, this system is also switchable an UV or thermal nanoimprint lithography mode. This paper shows how to design the heating and UV curing plates and proposes how to change them easily. Because the pressure condition and the speed of the press roller varies by the characteristics of the stamp and substrate, all the parameters related to the nanoimprint lithography have to adjustable. Some transferred patterns are shown in this paper to verify the performance of the hybrid nanoimprint lithography system. The flexible substrates with nano-scale patterns on them will be key components for next generation technologies such as flexible displays, bendable semi-conductors, and solar cells.

A Real time Simulation for Performance Analysis of Flight Control System (비행체 제어장치의 성능 해석을 위한 실시간 시뮬레이션)

  • 곽병철;박양배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.458-464
    • /
    • 1986
  • This paper introduces a method for design verification and performance evaluation of flight control system. The method is a real time hardware in the loop simulation using the hybrid computer and motion table facility. As a typical illustration, a roll control system of flight vehicle is applied. The simulation validity is demonstrated by comparing hardware test results with analog simulation results.

  • PDF

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

An Investigation of Slab-FEM for Rolling Analysis (압연해석을 위한 슬래브-유한요소법에 대한 연구)

  • Song, Jung-Hoon;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3454-3462
    • /
    • 1996
  • Compared to a full three dimensional FEM, the Slab-FEM hybrid method reduces the required computation time distinctly and it can be applied to the analysis of a shape rolling process. However, the method is somewhat approximate and predictions by the method contain certain inaccuracies. In the present investigation a parameter called T-factor was introduced to compensate the inaccuracies of the method and proper values of the parameter were estimated for different widths of bars and reduction ratios. Then, the method was applied to analyze cold and hot rollings of rectangular bars and predicted results were compared to those of experiments. Nonuniform distributions of temperature in the bars were predicted by utilizing the temperature equation obtained for a semi-infinite solid under radiation and convection boundary conditions. It was found out that accuracies of spread and roll separating force predictions could be enhanced by using proper values of the T-factor.

Measurement Algorithms of Sizing removed state using Image Process And Development of Carbon fibers with Electromagnetic shielding Performance (영상처리를 이용한 사이징 제거 상태 측정 알고리즘과 전자파 차폐 성능을 갖는 탄소 섬유 개발)

  • Cho, Joon-Ho;Jeon, Kwan-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this paper, the sizing removal condition for the pretreatment of composite materials is obtained numerically by applying an image processing algorithm and nickel-plated carbon fiber is fabricated by a dry process method to enhance its electromagnetic shielding performance. Sizings that are wrapped in a polymer type material during the manufacturing of carbon fiber should be removed for dry coating. A numerical value, that is the correlation, can be obtained by determining the regular pattern of the carbon fiber in the image taken by a scanning electron microscope (SEM) after the sizing is removed. The application of the proposed numerical method to the SEM image of the fiber after the sizing is removed with solution, compressed air, solution and compressed air (hybrid), showed that this method of eliminating the sizing is superior to the hybrid method. Then, by spreading the carbon fiber roll with the sizing removed, we were able to produce nickel plated carbon fiber by the roll-to-roll sputtering method. The electromagnetic shielding performance of the fabricated 30, 40 and 100 nickel coated carbon fibers was measured. The Korea Advanced Institute of Science and Technology evaluated the electromagnetic shielding performance of the 100 nickel-coated carbon fiber to have a maximum value of 73.2 (dB) and a minimum value of 66.7 (dB). This is similar to the electromagnetic shielding rate of copper and shows that this material can be used as a cable for EV / HEV automobiles.