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Abstract

This paper explores a model-free value-based approach for solving survival gridworld problem. Survival 

gridworld problem opens up a challenge involving taking risks to gain better rewards. Classic value-based 

approach in model-free reinforcement learning assumes minimal risk decisions. The proposed method involves 

a hybrid on-policy and off-policy updates to experience roll-outs using a modified Q-based update equation 

that introduces a parametric linear rectifier and motivational discount. The significance of this approach is it 

allows model-free training of agents that take into account risk factors and motivated exploration to gain 

better path decisions. Experimentations suggest that the proposed method achieved better exploration and path 

selection resulting to higher episode scores than classic off-policy and on-policy Q-based updates.
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Ⅰ. Introduction

Reinforcement learning (RL) is an area of machine

learning concerned with sequential decision

making process that aims to maximize potential

gains. It addresses the problem of an agent

learning to act in an environment in order to

maximize cumulative rewards [2]. Deep reinforcement

learning (DRL) is the result by combining deep

learning and RL [1]. DRL opens up a solution to

a wide range of complex decision making tasks

that were previously unattainable for a machine

[1]. In model-free reinforcement learning, the

agent actively collects experiences by interacting

with the environment following a given policy.

These experiences are then evaluated based on

the stimulus received, either a reward or a

penalty to encourage or discourage sequence of

actions in a particular situation. The state given

the evaluated stimulus forms the training data

for the estimator (neural network) to learn

successful control policies.

With the environment called gridworld, provides

a natural environment for the agent. The gridworld

consists of a two-dimensional grid of cells in

which the agent and objects occupy one cell of

the grid [4]. The agent is often given a task or

challenge in the gridworld where it can move to

the four adjacent directions or interact with

objects in a cell. Gridworld tasks can offer

difficulties that poses a challenge in RL despite

its simplistic nature.
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This paper explores a model-free value-based

approach for solving a particular gridworld problem:

the survival gridworld problem that may involve

taking risks in order to complete the task and

gain better rewards. The proposed method introduces

a parametric linear rectifier and a motivational

discount to the classic Q-based update equation.

It also involves utilization of hybrid on-policy

and off-policy control to gain better control policies.

Ⅱ. Background

The general RL problem is presented as a

discrete time step in stochastic control where the

agent interacts with the environment following a

Markov decision process (MDP) [1], [4], [5]. The

MDP is formalize by the tuple ⟨⟩where

it involves the state space , the action space ,

the transition function    × →Δ , and the

reward function    ×→□ [1]-[5]. The agent

starts at an initial state ∈. Then, at each time

step it observes the current input state ∈ and

takes an action ∈ drawn from a distribution

in the transition function  and receives a

reward  [1]-[5]. The step process continues

until the agent reaches a terminal state. Then,

after which the process restarts again.

Fig. 1. Agent to environment interaction in MDP.

The goal of the agent is to maximize the

reward from each state . The quality of action

value given by        π  which

is the expected return from selecting an action 

in state  following the action policy π where the

sum of discounted rewards  per time step is

described by  ∑′ 
 γ′  γ∈ [1], [5], [6].

Optimizing the quality of action value function

with respect to the Bellman equation [5] assuming

the optimal value of   for the state

 in the next time step is known for all

actions  will yield the expected value for the

current time step described by    

* *, max ,t t t t
a

Q s a r Q s ag= +

 [3].

Ⅲ. Deep Reinforcement Learning

Value-based approach in deep reinforcement

learning aims to build a value function that

defines a control policy [1]. The estimator (neural

network) is used as a value function to predict

the next action given the input state. Training a

deep learning agent comes in three phases. First,

is collecting experiences through agent to

environment interactions defined by a control policy.

Second, preparing training samples by processing

the state and Q-value pairs. Raw Q-value output

from the estimator is used to create the training

labels   for the input state by utilizing the

update formula derived from the MDP:

( )1max ,  ;Q
k t t k

a
Y r Q s ag q+= + (1)

where θ refers to parameters (network weights)

that defines the Q-values at the kth iteration

while the time step  only refers to the episodic

roll-outs in the collected experiences. Third,

optimizing the estimator using the state-  pair

as training data and with the loss function

defined by:

  θ 
 (2)

The control policy for interacting with the

environment is defined by the epsilon-greedy

policy (ε-greedy). This is derived from the

exploration-exploitation dilemma where at first the

experiences is collected by random walk (taking

random action). Then, the chance of random action

is decreased gradually as the estimator learns to
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make decisions in the environment.

Fig. 2. Diagram of deep RL method.

Ⅳ. Environment

Survival gridworld is a two-dimensional grid

environment where obstacles and rewards are

distributed between the start-point and the

end-point. The task of the agent is to navigate a

path from the start-point to end-point while

keeping a positive lifeline or energy meter  . The

agent is allowed to move in one of the four

adjacent directions. Each movement in the

gridworld costs a fixed energy defined by the

transition cost δ . Also, obstacles (negative

scalar) decrease the energy while rewards

(positive scalar) increase it. The condition for

failure is when  ≤  and the successful terminal

state is when the agent reaches the end-point

cell. At the end of the episode the score is

computed:

( )0max 1 , 1 ,  if successful

0                          ,  else            

e e
score

ì - +
= í
î

(3)

where  is the initial energy.
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Fig. 3. Survival gridworld sample. Cells A and B are the 

start-point and end-point.

(a) 8x8 gridworld. (b) 5x5 gridworld.

Ⅴ. Proposed Method

1. Estimator Design

A convolution neural network (CNN) is used

as value function estimator. The CNN design

used is shown in Table 1. The design for the

convolutional layers is made to effectively

extract significant features from the state input

while the fully connected layers are optimized for

the number of Q-value outputs for each action.

The dropout units in the fully connected layers

help to stabilize perturbations during training

caused by varying estimates of the Q-values.

The state input to the estimator is comprised of

four channels described as follows: Current state

- 5×5 cell cut-out of the surrounding relative to

the agent’s position. Previous state - 5×5 cell cut-

out of the previous surrounding relative to the

agent’s previous position. Location state – shows

the start-point and end-point with the agent’s

current position as well as the agent’s four

previous positions. Energy state - shows the

representation of the agent’s lifeline as a two-

dimensional energy bar. The current and previous

gridworld state ensures that the estimator can

perceive the changes and movement. The location

state directs the trajectory while the energy state

helps to hint at the current lifeline.

Table 1. Estimator design

Input Layer Input：16x16 x4 channels

Convolution 
Layer 

Conv. 1：filter 4x4x16, ReLu, MaxPool 2x2
Conv. 2：filter 4x4x32, ReLu, MaxPool 2x2

Fully 
Connected

Dense 1：64 units, ReLu, Drop rate=0.20
Dense 2：128 units, ReLu, Drop rate=0.40

Output 
Layer

Dense output：4 units only
(corresponds to four actions)

2. Reward Function Design

The design of the reward function is very

crucial for the agent’s successful training. The

reward function is as follows:
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
π

1. Use at the start of the training period
2. After every testing period:

When success rate is higher than a threshold
use on-policy update


ν

1. After every testing period: 
When success rate is lower than a threshold use 
off-policy update

Table 2. Hybrid update rule.

*

1,  if successful      

1,  if failed             

0.3,  if boundary bump

,  if non-terminal 
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where  is the value of the grid cell,  is the

maximum cell value plus a small positive integer,

 is the minimum cell value plus a small

negative integer,          ≤       

is the reduction factor. The energy state multiplier

is described as:

( )( )
1

( )
1 exp 0.25

t k
tv

e
e v

s
-

=
+ - (6)

where  is the current lifeline or energy state, 

is the scale for the minimum value of σ  such

that minσ ≈


, and defines the value for

asymptote approach.

The reward function may look a bit

complicated but the intuition behind it is simple.

The higher the current energy state te the

higher the gain and the lower the risk. In the

survival gridworld problem, often risks are

necessary to attain higher rewards.

3. Learning Algorithm

The learning algorithm utilizes a hybrid off-policy

and on-policy control update. Off-policy updates

are Q-value updates that is not based on the

agent’s experience from a series of actions such

as in eq. 1. In eq. 1 instead on using the value

θ for the future action reward, it

uses the maximum value ( )1max ,  ;t k
a
Q s a q+ . Another

example is supervised learning from human

expert moves in which the updates are not based

on the agent’s control policy. Contrary to

off-policy, on-policy updates are based on the

agent’s series of actions.

The utilization of a hybrid policy update comes

from the intuition that off-policy has a greedy

behavior such that it only focuses on attaining

the goal at any cost. It means that off-policy

agents are risk takers and it is more concerned

in the final outcome. While, on-policy agents are

safe players which can be good in exploring the

rewards in between, but less likely to converge

on a better path to the final goal given more

risks. Combining the two policies result in better

convergence to the final goal while gaining more

rewards in between.

The off-policy and on-policy update equations

are described respectively as follows:

( )1max ,  ;Q
k t t k

a
Y r Q s an w q+= + (7)

( )π
1 1ReLu ,  ;Q

k t t t kY r Q s a
r

w q+ +é ù= + ë û (8)

where the parametric linear rectifier is defined as

( ) ( )ReLu max ,x x x
r

r= . The motivational discount is:

( )1  ;  0< , 1Mw g h h g h= - + £é ùë û (9)

where  is the motivation function.

On the presented case,  is the ratio of the

Euclidian distance between the current position

and the end-point over the distance from

start-point to end-point. The intuition behind the

motivational discount is that, the nearer the

traversed path to the end-point, the better the

future rewards. This has also the effect of

slightly raising the update values at a later

training period which balances out the decrease

in learning rate of the estimator. The parametric

linear rectifier drastically shrinks the effects of

any major obstacles following a good reward.
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This encourages the agent to venture high risk

areas. The rules on when to apply on-policy 
π

and off-policy 
ν update are described in Table 2.

Ⅵ. Experimentation

To analyze and evaluate the performance of

the proposed method compared to classic Q-based

algorithms (off-policy; deep Q-learning and on-policy:

deep Sarsa algorithm [5]), carefully tuned survival

gridworlds are presented. These gridworlds are

tuned to have several paths leading to the

end-point. The paths include low-risk low-rewards,

high-risk high-rewards, and cross-over paths

(cross-over from low-risk to high-risk) with

several off-path rewards (higher chance to be

ignored).

In experiment 1, the gridworld in Fig. 4a is

designed to test the effects of on-policy

rectification (Eq. 8) where two main paths are

constructed, low-risk low-rewards and high-risk

high-rewards, and one cross-over path. In

experiment 2, the gridworld in Fig 4e is designed

for exploration testing where several opening

paths and cross-over are constructed. Also,

several off-path rewards are placed within

cross-over paths to confuse the agent. In

experiment 3, the gridworld in Fig. 4i is designed

for path selection testing where several paths are

constructed in a way that once an agent got

used to taking a certain low rewards path, it will

be harder to shift to another path (might be a

high rewards path). Also, off-path rewards are

placed to test for off-path exploration.

The following metrics, success rate and total

rewards, are used to analyze the behavior of the

agent under a particular learning algorithm.

Successful episode is when the agent traverses

the start-point to end-point and the total

rewards is the sum of all non-zero cells visited

by the agent. The metric, episode score, is used

to summarize the overall performance of the

agent, combining success rate, total rewards, and

assessment of the travelled path. Eq. 3 is used to

compute the episode score.

(a)

(b)

(c)

(d)

(e)

(f)
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(g)

(h)

(i)

(j)

(k)

(l)

Fig. 4. Test results for every training iteration. (a, b, c, d) 

Experiment 1 results. (e, f, g, h) Experiment 2 results. 

(i, j, k, l) Experiment 3 results. The x-axis of the 

plots correspond to a factor of 1x10̂ 3 episodes.

During experimentation, the agent is trained on

different learning methods. After every training

iteration, the agent is evaluated by playing 50

episodes where the results are presented in Fig

4. The results in experiment 1 as illustrated in

Fig. 4b-4d shows the effect of rectification.

Rectified on-policy method performs much better

than classic on-policy method based on the

episode score as presented in Fig. 4d. Based on

the positive reward distribution shown in Fig. 4a,

it can be deduced that the rectifier reduces the

declining effects of venturing into high risk

areas. Also, to compare, the proposed method

achieved higher score which means better exploration

than using on-policy only.

In experiments 2 and 3, the effects of

motivational discount ω is more pronounced in

more complex environments shown in Fig. 4e

and 4i. The delayed stable success period of the

proposed method shown in Fig. 4f and 4j is due

to reduced step rewards in early exploration. But,

this allows the agent to strengthen actions that

provide better gains at later exploration. Thus, in

Fig. 4g and Fig. 4k, it can be seen that classic

off-policy and on-policy methods has no further

progress as opposed to the proposed method

which at later episodes gained further positive

rewards. Moreover, in experiment 2, the proposed

method achieved better path exploration which

resulted in scoring 1.70x better than the

combined scores of the two classic methods as

shown in Fig 4h. Also, in experiment 3, the

proposed method, achieved better path selectivity

and off-path exploration which resulted in

scoring more than 1.40x better than each of the

two classic methods as shown in Fig 4l.

The role of the hybrid update rule is to stabilize

the effect of ω as fluctuations in future rewards

produce variances that affect the learning of the

estimator. Such effect can be seen in Fig. 4h and

Fig. 4j where there are sharp dips in the success

rate of the proposed method. The designed

experiments demonstrated the general behavior of
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the agent under the proposed method. From the

experiment results, it can be deduced that similar

behavior can be observed for other environments

as long as  in Eq. 9 for ω is well defined relative

to the target output. Overall, the proposed method

achieved better scores at the end of the training

period shown if Fig. 4d, Fig. 4h and Fig. 4l.

Ⅶ. Conclusion

This paper proposes a hybrid on-policy and

off-policy updates to experience roll-outs using a

modified Q-based update equation that introduces

a parametric linear rectifier and motivational

discount. Experimentations in section VI suggest

that the proposed method achieved better exploration

and path selection resulting to higher episode

scores than classic off-policy and on-policy Q-based

updates. To which, the significance of this approach

allows model-free training of agents that take

into account risk factors and motivated exploration

to gain better path decisions. This behavior is

highly valued especially to the field of robotics

where autonomous drones can be potentially

trained for exploration tasks where risks are

always present (such as unavoidable damages

and early power exhaustion).

Future work includes applying the modified

Q-based updates to policy-based methods such

as actor-critic [1], [5] and asynchronous methods

[6]. This will be significant in taking a step to

solve the challenges presented in [4] which is a

major milestone in AI reinforcement learning.
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