• 제목/요약/키워드: Hybrid rapid prototyping

검색결과 15건 처리시간 0.026초

하이브리드 쾌속 조형을 이용한 나노 복합재의 조형 (Fabrication of Nano Composites Using Hybrid Rapid Prototyping)

  • 추원식;김성근;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

절삭과 적층을 복합적으로 수행하는 하이브리드방식 쾌속시작시스템을 위한 층분할 (Layer Generation for Hybrid Rapid Prototyping System Using Machining and Deposition)

  • 이건우;강재관;주호
    • 한국CDE학회논문집
    • /
    • 제10권6호
    • /
    • pp.421-431
    • /
    • 2005
  • This paper introduces a new approach for saving build time of hybrid rapid prototyping by decomposing a part into minimum number of layers. In the hybrid rapid prototyping, a part of a complicated shape is realized by adding layers of a simpler shape, each of which is obtained by machining a sheet of constant thickness from its top and bottom surfaces. Thus it is desired to decompose a given part into the minimum number of layers while guaranteeing each layer to be fabricated from the given sheets using a 3-axis milling machine. To satisfy these requirements, a concave edge-based algorithm is proposed to decompose a part into layers by considering the tool accessibility, the total number of layers, and the allowable sheet thickness.

적층과 절삭을 복합적으로 수행하는 새로운 개녕의 판재 적층식 쾌속 시작 시스템의 개발(I);공정 및 기반구조 (Development of New Rapid Prototyping System Performing both Deposition and Machining(I);Process and Framework)

  • 허정훈;황재철;이건우;김종원;한동철;주종남;박종우
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1958-1967
    • /
    • 2000
  • Rapid Prototyping( RP ) has been increasingly applied in the process of design and development of new products. RP can shrink the time and expense required to bring a new product from initial concept to production. However, the necessity of using RP for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy materials, and cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed in this paper. It incorporates both material deposition in layers and material removal from the outer surface of the layer to produce the required surface finish. The new hybrid-RP system can dramatically reduce the total build time and fabricate largo-sized and freeform objects because it uses very thick layers, i.e.

적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 - (Development of New Rapid Prototyping System Performing both Deposition and Machining (II))

  • 허정훈;이건우
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

용접과 밀링을 이용한 쾌속조형법의 응용과 열변형 해석 (Application of Rapid prototyping for welding and milling, and Heat deformation for FEM)

  • 류연화;최우천;송용억;박세형;조정권;신승환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.339-343
    • /
    • 2000
  • Rapid prototyping for welding and milling is a hybrid approach that makes use of welding as additive and conventional milling as subtractive technique. For two years this concept has been used to verify manufacturing mold and mechanical parts successfully. In latest new fabrication methods. For example, manufacturing mold for two sort of materials and shell fabrication, have been applied to the concept in KIST. This methods will be an alternative proposal in rapid prototyping. Metal deposition for welding causes the part to deform. It is a handicap in our proceeding. To overcome this problem, in this paper, we represent an optimal welding path for FEM analysis. Eight paths are tried to this and the value of deformation is average and standard deviation in four points'. Then we can compare with eight cases and select the optimal path.

  • PDF

하이브리드 쾌속 조형 시스템의 개발 및 나노 복합재 부품 제작 (Development of Hybrid RP System and Fabrication of Nano Composite parts)

  • 김성근;정우균;추원식;김형중;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.220-223
    • /
    • 2005
  • The rapid prototyping (RP) technology has been advanced for various applications such as verification of design, functional test. However, many RP machines still have low accuracy and limitation of applications for various materials. In this research, a hybrid RP system was developed to improve precision of micro parts. This hybrid system consists of deposition and material removal process by mechanical micro machining to fabricate nano composites using photo-curable polymer resin with various nano particles. In this work, using hybrid RP process with Multi-Walled Carbon Nano Tube (MWCNT) and hydroxyapatite, micro parts were fabricated. The precision of parts was evaluated based on the original CAD design, and to see the effect of nano particles on mechanical properties, tensile strength was measured. From the results of experiments, it was confirmed that the part made by hybrid process had higher precision, and the addition of nano particles improved mechanical properties.

  • PDF

3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구 (A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques)

  • 변홍석
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

Hybrid Multi-System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

  • Putra, Rachmad Vidya Wicaksana;Adiono, Trio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권1호
    • /
    • pp.55-62
    • /
    • 2016
  • In this paper, we propose a hybrid multi.system-on-chip (H-MSoC) architecture that provides a high-flexibility system in a rapid development time. The H-MSoC approach provides a flexible system-on-chip (SoC) architecture that is easy to configure for physical- and application-layer development. The physical- and application-layer aspects are dynamically designed and modified; hence, it is important to consider a design methodology that supports rapid SoC development. Physical layer development refers to intellectual property cores or other modular hardware (HW) development, while application layer development refers to user interface or application software (SW) development. H-MSoC is built from multi-SoC architectures in which each SoC is localized and specified based on its development focus, either physical or application (hybrid). Physical HW development SoC is referred to as physical-SoC (Phy-SoC) and application SW development SoC is referred to as application-SoC (App-SoC). Phy-SoC and App-SoC are connected to each other via Ethernet. Ethernet was chosen because of its flexibility, high speed, and easy configuration. For prototyping, we used a LEON3 SoC as the Phy-SoC and a ZYNQ-7000 SoC as the App-SoC. The proposed design was proven in real-time tests and achieved good performance.

괘속조형기술과 고속가공을 이용한 하이브리드 금형 개발에 대한 사례연구 (Case Study for Hybrid Tooling Using High Speed Cutting and RP(Rapid Prototyping) Technologies)

  • 권홍규;장무경;홍정의
    • 산업경영시스템학회지
    • /
    • 제33권4호
    • /
    • pp.159-166
    • /
    • 2010
  • The speed at which products are developed and released to market is tightly linked to profitability and market share. Hence, many companies are still in a desperate need of real Rapid Tooling (RT) technologies which can really help to expedite their prototype tooling and pre -production tooling for injection molding. Many other companies that have been very skeptical of RT technologies developed so far are working on Hybrid Tooling (HT) that can really meet the market standards. With the conviction that HT can be a reliable alternative for current RT technologies, this paper describes the experimentation how HT process has been being successfully established and effectively applied with typical case studies. Through the experimentation, Ceramic-filled SLA tooling was found to be aptly suited for the low grade mold, and Metal SLS tooling was found to be aptly suited for the medium volume mold both in terms of the lead time, dimensional accuracy, and tooling cost.

Educational Framework for Interactive Product Prototyping

  • Nam Tek-Jin
    • 디자인학연구
    • /
    • 제19권3호
    • /
    • pp.93-104
    • /
    • 2006
  • When the design profession started, design targets were mainly static hardware centered products. Due to the development of network and digital technologies, new products with dynamic and software-hardware hybrid interactive characteristics have become one of the main design targets. To accomplish the new projects, designers are required to learn new methods, tools and theories in addition to the traditional design expertise of visual language. One of the most important tools for the change is effective and rapid prototyping. There have been few researches on educational framework for interactive product or system prototyping to date. This paper presents a new model of educational contents and methods for interactive digital product prototyping, and it's application in a design curricula. The new course contents, integrated with related topics such as physical computing and tangible user interface, include microprocessor programming, digital analogue input and output, multimedia authoring and programming language, sensors, communication with other external devices, computer vision, and movement control using motors. The final project of the course was accomplished by integrating all the exercises. Our educational experience showed that design students with little engineering background could learn various interactive digital technologies and its' implementation method in one semester course. At the end of the course, most of the students were able to construct prototypes that illustrate interactive digital product concepts. It was found that training for logical and analytical thinking is necessary in design education. The paper highlights the emerging contents in design education to cope with the new design paradigm. It also suggests an alterative to reflect the new requirements focused on interactive product or system design projects. The tools and methods suggested can also be beneficial to students, educators, and designers working in digital industries.

  • PDF