
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.1.55 55

IEIE Transactions on Smart Processing and Computing

Hybrid Multi–System-on-Chip Architecture as a Rapid
Development Approach for a High-Flexibility System

Rachmad Vidya Wicaksana Putra and Trio Adiono

Integrated Circuits Laboratory, Microelectronics Center, Institut Teknologi Bandung / Bandung, Indonesia
rachmad@pme.itb.ac.id, tadiono@stei.itb.ac.id

* Corresponding Author: Trio Adiono

Received February 20, 2016; Accepted February 25, 2016; Published February 29, 2016

* Extended from a Conference: Preliminary results of this paper were presented at the ICEIC 2016. This present paper has
been accepted by the editorial board through the regular reviewing process that confirms the original contribution.

Abstract: In this paper, we propose a hybrid multi–system-on-chip (H-MSoC) architecture that
provides a high-flexibility system in a rapid development time. The H-MSoC approach provides a
flexible system-on-chip (SoC) architecture that is easy to configure for physical- and application-
layer development. The physical- and application-layer aspects are dynamically designed and
modified; hence, it is important to consider a design methodology that supports rapid SoC
development. Physical layer development refers to intellectual property cores or other modular
hardware (HW) development, while application layer development refers to user interface or
application software (SW) development. H-MSoC is built from multi-SoC architectures in which
each SoC is localized and specified based on its development focus, either physical or application
(hybrid). Physical HW development SoC is referred to as physical-SoC (Phy-SoC) and application
SW development SoC is referred to as application-SoC (App-SoC). Phy-SoC and App-SoC are
connected to each other via Ethernet. Ethernet was chosen because of its flexibility, high speed, and
easy configuration. For prototyping, we used a LEON3 SoC as the Phy-SoC and a ZYNQ-7000
SoC as the App-SoC. The proposed design was proven in real-time tests and achieved good
performance.

Keywords: H-MSoC, High-flexibility system, Rapid development, Physical-SoC, Application-SoC

1. Introduction

System-on-chip (SoC) is an integrated circuit (IC) that
integrates many electronic components into a single
complete system. This technology has driven many
developments in electronics and in a broad spectrum of
applications, especially in the embedded systems world.
Many devices and gadgets for many levels of applications
were basically established from SoC technology. Thus, we
can conclude that SoC technology has been indispensable
to daily life.

Most SoC developments are driven by evolution in
applications [1]. Each SoC design methodology faces
unique challenges, with solutions based on the purpose of
the application [2]. A lot of research into SoC technology
has proven this [3-7]. Meanwhile, concerns about SoC

technology are always the same: high performance speed,
a small footprint, low power consumption, high flexibility
and configurability, and a short time-to-market [8]. Thus,
much of the research has been conducted in order to
answer those challenges.

Traditionally, SoC design has focused on the com-
putational aspect of modular hardware (HW) design or
intellectual property (IP) components. Those modular
hardware components will be plug-and-play based on the
bus interface standard. This method will tend to make the
area occupation of the SoC larger and larger, along with
the increasing number of hardware components. According
to Marculescu et al. [9], as the number of SoC components
increases, architecture design of the communications
aspect will dominate, defining several important para-
meters in the SoC, such as area occupation size, perfor-

Putra et al.: Hybrid Multi–System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

56

mance quality, and energy consumption. Furthermore, with
today’s technology scaling, inter-resources connections in
the SoC can cause severe on-chip problems, such as
unpredictable delays, high power consumption, and
synchronization errors.

One of most popular solutions addressing the on-chip
inter-resources connection problem is the network-on-chip
(NoC) architecture. It was developed to achieve efficient
on-chip interconnection among many resources (e.g.
modular hardware components, such as the processor and
IP core) [10]. With this technology, the internal resources
become efficiently connected in a network-like concept
with a router-like mechanism. This technology requires
high design complexity and precise design to accommo-
date the good routing mechanism. Thus, NoC’s inter-
resources communications crash can be avoided. However,
because of its high complexity, the development time may
be more prolonged than in the traditional design.

Another idea for overcoming on-chip inter-resources
connection problems is the multi-SoC architecture. By
using this concept, two or more SoCs are integrated to
become a single system. This idea was proposed by using
an asynchronous bridge [11]. Homogeneous or hetero-
geneous SoCs can be implemented by using this develop-
ment approach. But the design of an asynchronous bridge
is not simple, because the type of SoC will define the
unique challenges to designing a compatible asynchronous
bridge. Moreover, design quality of the asynchronous
bridge will contribute to defining the system’s complexity
and delay.

From a study of the literature, we can summarize the
three important issues in SoC design. First, the SoC has to
be easy to configure in order to cope with its various
applications. Thus, the SoC architecture needs to be
flexible enough. Second, the on-chip inter-resources
connections have to be efficient. A single processor will
not be able to utilize all of the resources of an entire chip at
the same time [5]. Thus, we have to keep both simplicity
and efficiency in the on-chip connections. Third, SoC
development time needs to be short enough to meet time-
to-market constraints. These three issues are our research
targets.

In order to achieve those three targets, we propose an
architecture that uses a multi-SoC concept to separate and
localize each single SoC to handle a specific development
purpose, either physical layer development or application
layer development. Physical layer development refers to
intellectual property cores or other modular hardware
(HW) development, while application layer development
refers to user interface (UI) or application software (SW)
development. They are connected to each other via the
Ethernet protocol. A specific SoC for physical layer
development is referred to as physical-SoC (Phy-SoC),
whereas a specific SoC for application layer development
is referred to as application-SoC (App-SoC). Because this
approach uses a multi-SoC concept and a separate focus on
physical–application layer development, we called the
design approach a hybrid multi–system-on-chip (H-MSoC)
architecture. By using the H-MSoC approach, we can
achieve a SoC design that has high flexibility for many
applications in an embedded system, efficient inter-

resources connections in each SoC and between SoCs, and
a short development time-to-market.

For prototype evaluation, we used a LEON3 SoC as the
Phy-SoC and a ZYNQ-7000 SoC as the App-SoC. The
LEON3 SoC was chosen because of its powerful com-
putation capabilities and extensive documentation. Hence,
it is suitable for use as a physical HW development
platform. The ZYNQ-7000 SoC was chosen because of its
flexibility and compatibility in executing user applications.
Hence, it is suitable for use as an application SW develop-
ment platform. Meanwhile, the Ethernet protocol was
chosen for the inter-SoC communication scheme because
of its high speed, flexibility, and easy configuration.

This paper presents several sections. Following the
introduction about the research background, related
research and the research targets is an overview of related
works. A discussion on the proposed H-MSoC architecture
is followed by a discussion on the proposed design
methodology, which is followed by evaluation of results
and analysis. The final three sections are the conclusion,
the acknowledgement, and the references.

2. Related Works

System-on-chip is an IC that contains and integrates
many electronic components to become a complete system.
It has to ensure that each component and the whole
integrated system work properly [2]. The SoC design
approach uses a platform-based methodology; hence, the
SoC developer only needs to focus on the creation of
specific IP block functionality and its embedded program
[12, 13]. This is the strong point of a platform-based
methodology. The SoC developer does not bother to
design all components from scratch.

There are two categories of SoC design methodology:
standard SoC and communication-centric SoC [14]. These
categories are based on the on-chip communications
scheme. The standard SoC methodology is the common
way to design a traditional SoC. Meanwhile, a commu-
nications-centric SoC methodology was developed to
comply with NoC requirements. Since the NoC architec-

Fig. 1. Standard SoC design methodology [14].

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016

57

ture is not the basic platform of this research, we can adapt
the standard SoC to develop the H-MSoC design
methodology. The standard SoC design methodology is
shown in Fig. 1.

In the standard SoC design methodology, specification
of the SoC comes first. Then, it needs to be integrated into
the architectural design definition. From this definition,
three design aspects can be explored: HW unit design,
communications scheme infrastructure, and SW definition
and tools development. HW units and the communications
scheme are integrated into the SoC HW platform. It needs
to be checked in order to ensure that its functionalities
comply with the architecture definition. If the SoC HW
platform is ready, the SW programs and applications can
be implemented on it.

3. Proposed H-MSoC System
Architecture

The hybrid multi–system-on-chip (H-MSoC) architec-
ture is formed from Phy-SoC and App-SoC architectures,
which are connected to each other via Ethernet, as
illustrated in Fig. 2. The focus of Phy-SoC is IP core
development, SoC HW configuration, and processing
monitor. Meanwhile, the focus of App-SoC is application
and the user interface development. Because of its
separation and localization approach, both homogeneous
and heterogeneous SoC platforms can be used.

Actually, the hierarchical designs of those SoCs are the
same. The differences are in the choice of SoC HW
architecture, operating system (OS), application program,
and types of data. By judicious choice and design from
those aspects, each SoC can be designed optimally and
efficiently, yet at the same time, can attain high flexibility
and a broad spectrum of applications.

For Phy-SoC design, the SoC HW platform should be
easily configured in the HW design approach. It essentially

supports a real-time operating system (RTOS) and simple
programming, because they are sufficient for executing
and running the instructions in the Phy-SoC. For App-SoC
design, the SoC HW platform should be easily configured,
supporting the higher level OS and high-level pro-
gramming, because they are compatible with application
and UI development. Furthermore, each SoC can be
reconfigured anytime. Because of the different focus, Phy-
SoC and App-SoC can be designed separately. Each SoC
is independent. Thus, arguably, the H-MSoC architecture
offers rapid development time in achieving high-flexibility
functions.

4. Design Methodology and Prototyping

The proposed design methodology’s flowchart can be
seen in Fig. 3. First, we have to define the H-MSoC
specifications and architecture, which can then be broken
down into two major designs: the Phy-SoC and App-SoC
design methodologies. Since we use the standard SoC
design method, each SoC will be treated in a similar
manner. Three parts of the SoC are designed: the HW unit,
the application SW, and the communications infrastructure.
Afterwards, if all SoCs are ready, they will be connected to
each other using the Ethernet protocol. If all tests and
evaluations show good performance, the H-MSoC
architecture is proven.

4.1 Physical-SoC (Phy-SoC)
For Phy-SoC design, we built an embedded system

with LEON3-based SoC HW as the reference for the
architecture platform. The real-time operating system
(RTOS) eCos is embedded in the Phy-SoC HW. We chose
the eCos RTOS because it is freely licensed and feasibly
configured for precise application requirements [15]. In the
higher layers, simple programs run and compute the data.

For this Phy-SoC prototype, the Stratix II EP2S180
DSP development board was used. The focus in the Phy-
SoC is IP core or modular HW development. Thus, in this
prototype, we have two HW design scenarios. First, we
added an existing IP core to prove that the SoC can be
reconfigured with the existing IP cores. Second, we added
a fully customized IP core to prove that the SoC can be
reconfigured with new IP cores, even if designed from
scratch. For the first scenario, a physical WiMAX design
(PHY_WMX) was added with peripheral support [16]. For
the second, a custom ROM design (RCH_ROM) was
created and added into the Phy-SoC. The final LEON3-
based Phy-SoC architecture is illustrated in Fig. 4.

4.2 Application-SoC (App-SoC)
For the App-SoC design, we built an embedded system

with a ZYNQ-7000–based SoC HW as a reference
architecture platform. The basic HW architecture of the
ZYNQ-7000–based SoC was adopted from the Boot
Partition Kit provided by Xillybus [17]. For the operating
system, we chose Xillinux, which is also from Xillybus. It

Fig. 2. H-MSoC architecture hierarchy.

Putra et al.: Hybrid Multi–System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

58

is a Linux-based OS distribution for Zedboard, Zybo,
Microzed, and SocKit [17]. In the higher layers, we can
create functional programs or install existing applications
to run and compute the data. For this App-SoC prototype,
we used the Zybo development board. The final ZYNQ-
7000–based App-SoC architecture is illustrated in Fig. 5.

The focus in the App-SoC is application or user
interface development. Thus, in this prototype, we needed

to use a high-functionality OS (a Linux distribution) and
existing programs that run on the OS in order to prove that
the SoC is capable of supporting a high-level OS and many
UI-based applications. Hopefully, it can complement the

Fig. 3. H-MSoC design methodology.

Fig. 4. LEON3 based Phy-SoC Architecture

Fig. 5. ZYNQ-7000 based App-SoC Architecture.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016

59

Phy-SoC. Disadvantages of the Phy-SoC can be overcome
by the advantages of the App-SoC, and vice versa.

4.3 Design Integration into H-MSoC
After the Phy-SoC and App-SoC are proven to work

properly, design integration is the next step. We call this
integrated design a hybrid multi-SoC. The integration
infrastructure is established by using the Ethernet protocol,
which was chosen because of its flexible configuration,
high speed, and mature concept worldwide. Fig. 6
illustrates the detailed design integration in the H-MSoC
architecture prototype, and Fig. 7 is the actual prototype
snapshot.

For inter-SoC connection, each SoC uses an ETH PHY.
In the prototype, we use an SMSC LAN91C111 for the
LEON3 SoC and a Realtek RTL8211E for the ZYNQ-
7000 SoC. For Phy-SoC, ETH PHY is connected directly
to a memory controller. Thus, every single piece of data
transferred or received via Ethernet has to pass through the
memory controller. Here, we only do socket programming
to transmit and receive the data. Meanwhile, for App-SoC,
ETH PHY is connected to multiplexed input/output (MIO),
which is connected directly to the processing system (PS).
Specifically, we use MIO16 up to MIO27 to connect
Ethernet to the PS. Hence, we only need to install OS and

Ethernet drivers, and thus, the Ethernet is ready to transmit
and receive data.

5. Evaluation of Results and Analysis

5.1 Physical-SoC Evaluation
For functional evaluation, we created a test program to

evaluate signaling performance inside the Phy-SoC. We
mainly evaluated signaling from three aspects: (1) data
access from the IP core, (2) data transfer over the
Advanced Microcontroller Bus Architecture (AMBA), the
Advanced High-performance Bus (AHB) and the Advanced
Peripheral Bus (APB), and (3) interrupt performance.
From the evaluation, we have proven that the Phy-SoC
works successfully. Functional simulation results are
presented in Fig. 8. We can clearly see that data access is
done in the IP core. The data can also be delivered via
AMBA, AHB, and APB in order to evaluate the interface
performance between the IP cores and buses.

For communications evaluation, a network ping test
and data transfer between Phy-SoC and a laptop were
observed. “Transferred data” is a collection of customized
data stored in the customized ROM (RCH_ROM). Data
transfer is done by using User Datagram Protocol (UDP).

Fig. 6. Detailed H-MSoC architecture prototype.

Fig. 7. Actual H-MSoC prototype.

Putra et al.: Hybrid Multi–System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

60

UDP was chosen because of its simple mechanism, which
is suitable for simple data transfer evaluation. Test results
show that the communications module in the Phy-SoC
works properly, which means the Phy-SoC can
communicate and transfer data with outside systems. Thus,
the Phy-SoC is ready to be integrated into the H-MSoC.
The network ping test and received data in the laptop are
shown in Figs. 9 and 10, respectively.

5.2 Application-SoC Evaluation
For App-SoC evaluation, network ping and video

streaming evaluations were conducted. The App-SoC
responds to the network ping with a response time

parameter. The results can be seen in Fig. 11. We can see
that response times on network ping are handled by App-
SoC in 0.3-0.7 ms. Since the App-SoC is supposed to be
the one receiving data from the Phy-SoC and it is
insensitive to latency, the performance result is sufficient.

For video streaming evaluation, we sent a video from
the laptop to the App-SoC and evaluated its output, both
sound and display. For a video tester source, we chose the
MP4 video format with the following specifications:
322x240 pixels per frame, a frame rate of 25 fps, a data
rate of 217 kbps, and total bit rate of 313 kbps. As shown
in Fig. 12, display results for video streaming are good.
The video is played smoothly, and the audio is clear. This
evaluation ensures that the App-SoC is working properly
and can be developed further as an application SW
development platform. It also means the App-SoC is ready
to be connected to the Phy-SoC in order to form the H-
MSoC system.

5.3 H-MSoC Evaluation
H-MSoC evaluation was conducted by observing data

transfer activity and communications between Phy-SoC
and App-SoC. The H-MSoC connection setup is shown in

Fig. 8. Functional simulation result.

Fig. 9. Network ping result.

Fig. 10. Data transfer result.

Fig. 11. Network ping response time.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 1, February 2016

61

Fig. 7. A Stratix II EP2S180 DSP development board
contains the Phy-SoC design; meanwhile, a Zybo
development board contains the App-SoC. Evaluation
results in Fig. 13 show that data transfer is successful. Phy-
SoC and App-SoC are proven to work together properly to
establish collaborative communications as a single H-
MSoC. This evaluation leads us to two points about the H-
MSoC development approach. First, Phy-SoC and App-
SoC are proven to work together properly and to
collaborate with each other for internal communications in
the H-MSoC system. Second, the H-MSoC architecture is
quickly and easily configured, from both the physical HW
and application SW development perspectives.

6. Conclusion

In this paper, we propose an alternative SoC
architecture that can provide a high-flexibility system in a
short development time. It is called a hybrid multi-SoC (H-
MSoC) architecture approach. The evaluation results have
proven that the proposed H-MSoC architecture and its
design methodology can attain the research targets. (1) The
H-MSoC architecture is easy to configure and capable of
forming a high-flexibility system; (2) on-chip connections

are efficient because of SoC separation and localization
based on its development layer, either physical HW
development or application SW development; and (3)
development time is short enough to meet time-to-market
constraints.

Acknowledgement

This research was supported by the Indonesia
Endowment Fund for Education (LPDP) Scholarship, from
the Ministry of Finance, Republic of Indonesia.

References

[1] D. Bertozzi and L. Benini, "Xpipes: a network-on-

chip architecture for gigascale systems-on-chip,"
IEEE Circuits Syst. Mag., vol. 4, pp. 18-31, Sep-
tember 2004. Article (CrossRef Link)

[2] R. Abdel-Khalek and V. Bertacco, "SoCGuard: a
runtime verification solution for the functional
correctness of SoCs," Proc. of IEEE/IFIP VLSI
System on Chip Conf., pp. 49-54, September 2010.
Article (CrossRef Link)

[3] H.J. Stolberg, et al., "HiBRID-SoC: a multi-core
system-on-chip architecture for multimedia signal
processing applications," Proc. of Design, Automa-
tion and Test in Europe Conf. and Exhibition, pp. 8-
13, March 2003. Article (CrossRef Link)

[4] H.J. Stolberg, et al., "HiBRID-SoC: a multi-core SoC
architecture for multimedia signal processing," Proc.
of IEEE Workshop on Signal Process. Syst., pp. 189-
194, August 2003. Article (CrossRef Link)

[5] M. Berekovic, et al., "HiBRID-SoC: a multi-core
architecture for image and video applications," Proc.
of Int. Conf. on Image Process., pp.III 101-104,
September 2003. Article (CrossRef Link)

[6] L. Friebe, et al., "HiBRID-SoC: a system-on-chip
architecture with two multimedia DSPs and a RISC
core," Proc. of Int. SoC Conf., pp.85-88, September

Fig. 12. Video streaming result with clear audio and display.

Fig. 13. Display of tranceived data between Phy-SoC
and App-SoC.

http://dx.doi.org/10.1109/MCAS.2004.1330747
http://dx.doi.org/10.1109/vlsisoc.2010.5642622
http://dx.doi.org/10.1109/date.2003.1253797
http://dx.doi.org/10.1109/sips.2003.1235667
http://dx.doi.org/10.1109/icip.2003.1247191

Putra et al.: Hybrid Multi–System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

62

2003. Article (CrossRef Link)
[7] V.C. Srinivas, et al., "A VLSI system-on-a-chip

(SoC) for digital communications," Proc. of IFIP Int.
Conf. on Wireless and Optical Commun. Networks,
pp. 148-152, April 2006. Article (CrossRef Link)

[8] C.C. Yang, et al., "A novel methodology for multi-
project system-on-a-chip," Proc. of IEEE Int. SoC
Conf., pp. 308-311, September 2011. Article
(CrossRef Link)

[9] R. Marculescu, et al., "Outstanding research problems
in NoC design: system, microarchitecture, and circuit
perspectives," IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Syst., vol. 28, pp. 3-21,
January 2009. Article (CrossRef Link)

[10] S. Kumar, et al., "A network on chip architecture and
design methodology," Proc. of the IEEE Comput. Soc.
Annu. Symp. on VLSI, pp. 105-112, April 2002.
Article (CrossRef Link)

[11] D. Kliem and S.O. Voight, "An asynchronous bus
bridge for partitioned multi-SoC architectures on
FPGAs," Proc. of Int. Conf. on Field Programmable
Logic and Applicat., pp. 1-4, September 2013. Article
(CrossRef Link)

[12] C.M. Huang, et al., "Programmable system-on-chip
(SoC) for silicon prototyping," Proc. of IEEE Int.
Symp. on Ind. Electron., pp. 1976-1981, July 2008.
Article (CrossRef Link)

[13] C.M. Huang, et al., "Implementation and prototyping
of a complex multi-project system-on-a-chip," Proc.
of IEEE Int. Symp. on Circuits and Syst., pp. 2321-
2324, May 2009. Article (CrossRef Link)

[14] R. Lemaire, et al., "A flexible modeling environment
for a NoC-based multicore architecture," Proc. of the
IEEE Int. High Level Design Validation and Test
Workshop, pp. 140-147, November 2012. Article
(CrossRef Link)

[15] eCos. (2015, April 8). eCos Home Page: Introduction
[Online]. Available: Article (CrossRef Link)

[16] T. Adiono, et al., "Real-time WiMAX system on chip
design, implementation and field test," Proc. of the
IEEJ Int. Analog VLSI Workshop, pp. 1-5, November
2012.

[17] Xillybus. (2015, April 8). Xillinux: A Linux distribu-
tion for Zedboard, ZyBo, MicroZed and SocKit
[Online]. Available: Article (CrossRef Link)

Rachmad Vidya Wicaksana Putra
received his B.Sc degree in Electrical
Engineering major from Institut
Teknologi Bandung (ITB), Indonesia,
in 2012. He received his M.Sc degree
also from ITB in Microelectronics
major with a distinction Cum Laude in
2015. He received an Indonesia

Endowment Fund for Education (LPDP) Scholarship for
his master study and potentially for his Ph.D. program. He
was involved in several projects and researches, such as
Heart Rate Sensing, Military Digital Radar Display, and
Software Defined Radio developments. Currently, he is
managing several number of researches in Microelec-
tronics Center ITB, such as RF Sensor and Monitoring
System, Internet-of-Things for Smart Home Applications,
etc. He is also preparing to start his PhD program at KTH
Royal Institute of Technology, Sweden, this year on
Neuromorphic Chip Design. His interests are mainly about
VLSI, Integrated Circuits and Systems, Neuromorphic,
Hardware Arithmetic, Embedded Systems, Digital Signal
Processing, and Internet-of-Things.

Trio Adiono received B.Eng. degree
in Electrical Engineering major and
M.Eng. degree in Microelectronics
from Institut Teknologi Bandung
(ITB), Indonesia, in 1994 and 1996,
respectively. He obtained his Ph.D.
degree in VLSI Design from Tokyo
Institute of Technology, Japan, in

2002. From 2002 to 2004, he was a research fellow of the
Japan Society for the Promotion of Science (JSPS) in
Tokyo Institute of Technology. In 2005, he was a visiting
scholar at MESA+, Twente University, the Netherlands.
He received the "Second Japan Intellectual Property (IP)
Award" in 2000 from Nikkei BP for his research on "Low
Bit-rate Video Communication LSI Design". He also holds
a Japanese Patent on "High Quality Video Compression
System". Currently, he is a lecturer at the School of
Electrical Engineering and Informatics ITB, a Head of the
Microelectronics Center and IC Design Laboratory, Institut
Teknologi Bandung. He has co-founded several start-up
companies in Japan and Indonesia. He currently serves as a
chair of the IEEE SSCS Indonesia Chapter. His research
interests include VLSI, Signal and Image Processing,
Smart Card, Electronics Solution Design and Integration.

Copyrights © 2016 The Institute of Electronics and Information Engineers

http://dx.doi.org/10.1109/soc.2003.1241468
http://dx.doi.org/10.1109/wocn.2006.1666560
http://dx.doi.org/10.1109/socc.2011.6085090
http://dx.doi.org/10.1109/socc.2011.6085090
http://dx.doi.org/10.1109/TCAD.2008.2010691
http://dx.doi.org/10.1109/isvlsi.2002.1016885
http://dx.doi.org/10.1109/fpl.2013.6645569
http://dx.doi.org/10.1109/fpl.2013.6645569
http://dx.doi.org/10.1109/ISIE.2008.4677107
http://dx.doi.org/10.1109/iscas.2009.5118264
http://dx.doi.org/10.1109/hldvt.2012.6418256
http://dx.doi.org/10.1109/hldvt.2012.6418256
http://ecos.sourceware.org/
http://xillybus.com/ xillinux

