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Abstract: In this paper, we propose a hybrid multi–system-on-chip (H-MSoC) architecture that 
provides a high-flexibility system in a rapid development time. The H-MSoC approach provides a 
flexible system-on-chip (SoC) architecture that is easy to configure for physical- and application-
layer development. The physical- and application-layer aspects are dynamically designed and 
modified; hence, it is important to consider a design methodology that supports rapid SoC 
development. Physical layer development refers to intellectual property cores or other modular 
hardware (HW) development, while application layer development refers to user interface or 
application software (SW) development. H-MSoC is built from multi-SoC architectures in which 
each SoC is localized and specified based on its development focus, either physical or application 
(hybrid). Physical HW development SoC is referred to as physical-SoC (Phy-SoC) and application 
SW development SoC is referred to as application-SoC (App-SoC). Phy-SoC and App-SoC are 
connected to each other via Ethernet. Ethernet was chosen because of its flexibility, high speed, and 
easy configuration. For prototyping, we used a LEON3 SoC as the Phy-SoC and a ZYNQ-7000 
SoC as the App-SoC. The proposed design was proven in real-time tests and achieved good 
performance.  
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1. Introduction 

System-on-chip (SoC) is an integrated circuit (IC) that 
integrates many electronic components into a single 
complete system. This technology has driven many 
developments in electronics and in a broad spectrum of 
applications, especially in the embedded systems world. 
Many devices and gadgets for many levels of applications 
were basically established from SoC technology. Thus, we 
can conclude that SoC technology has been indispensable 
to daily life.  

Most SoC developments are driven by evolution in 
applications [1]. Each SoC design methodology faces 
unique challenges, with solutions based on the purpose of 
the application [2]. A lot of research into SoC technology 
has proven this [3-7]. Meanwhile, concerns about SoC 

technology are always the same: high performance speed, 
a small footprint, low power consumption, high flexibility 
and configurability, and a short time-to-market [8]. Thus, 
much of the research has been conducted in order to 
answer those challenges. 

Traditionally, SoC design has focused on the com-
putational aspect of modular hardware (HW) design or 
intellectual property (IP) components. Those modular 
hardware components will be plug-and-play based on the 
bus interface standard. This method will tend to make the 
area occupation of the SoC larger and larger, along with 
the increasing number of hardware components. According 
to Marculescu et al. [9], as the number of SoC components 
increases, architecture design of the communications 
aspect will dominate, defining several important para-
meters in the SoC, such as area occupation size, perfor-
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mance quality, and energy consumption. Furthermore, with 
today’s technology scaling, inter-resources connections in 
the SoC can cause severe on-chip problems, such as 
unpredictable delays, high power consumption, and 
synchronization errors. 

One of most popular solutions addressing the on-chip 
inter-resources connection problem is the network-on-chip 
(NoC) architecture. It was developed to achieve efficient 
on-chip interconnection among many resources (e.g. 
modular hardware components, such as the processor and 
IP core) [10]. With this technology, the internal resources 
become efficiently connected in a network-like concept 
with a router-like mechanism. This technology requires 
high design complexity and precise design to accommo-
date the good routing mechanism. Thus, NoC’s inter-
resources communications crash can be avoided. However, 
because of its high complexity, the development time may 
be more prolonged than in the traditional design. 

Another idea for overcoming on-chip inter-resources 
connection problems is the multi-SoC architecture. By 
using this concept, two or more SoCs are integrated to 
become a single system. This idea was proposed by using 
an asynchronous bridge [11]. Homogeneous or hetero-
geneous SoCs can be implemented by using this develop-
ment approach. But the design of an asynchronous bridge 
is not simple, because the type of SoC will define the 
unique challenges to designing a compatible asynchronous 
bridge. Moreover, design quality of the asynchronous 
bridge will contribute to defining the system’s complexity 
and delay.  

From a study of the literature, we can summarize the 
three important issues in SoC design. First, the SoC has to 
be easy to configure in order to cope with its various 
applications. Thus, the SoC architecture needs to be 
flexible enough. Second, the on-chip inter-resources 
connections have to be efficient. A single processor will 
not be able to utilize all of the resources of an entire chip at 
the same time [5]. Thus, we have to keep both simplicity 
and efficiency in the on-chip connections. Third, SoC 
development time needs to be short enough to meet time-
to-market constraints. These three issues are our research 
targets. 

In order to achieve those three targets, we propose an 
architecture that uses a multi-SoC concept to separate and 
localize each single SoC to handle a specific development 
purpose, either physical layer development or application 
layer development. Physical layer development refers to 
intellectual property cores or other modular hardware 
(HW) development, while application layer development 
refers to user interface (UI) or application software (SW) 
development. They are connected to each other via the 
Ethernet protocol. A specific SoC for physical layer 
development is referred to as physical-SoC (Phy-SoC), 
whereas a specific SoC for application layer development 
is referred to as application-SoC (App-SoC). Because this 
approach uses a multi-SoC concept and a separate focus on 
physical–application layer development, we called the 
design approach a hybrid multi–system-on-chip (H-MSoC) 
architecture. By using the H-MSoC approach, we can 
achieve a SoC design that has high flexibility for many 
applications in an embedded system, efficient inter-

resources connections in each SoC and between SoCs, and 
a short development time-to-market.  

For prototype evaluation, we used a LEON3 SoC as the 
Phy-SoC and a ZYNQ-7000 SoC as the App-SoC. The 
LEON3 SoC was chosen because of its powerful com-
putation capabilities and extensive documentation. Hence, 
it is suitable for use as a physical HW development 
platform. The ZYNQ-7000 SoC was chosen because of its 
flexibility and compatibility in executing user applications. 
Hence, it is suitable for use as an application SW develop-
ment platform. Meanwhile, the Ethernet protocol was 
chosen for the inter-SoC communication scheme because 
of its high speed, flexibility, and easy configuration.  

This paper presents several sections. Following the 
introduction about the research background, related 
research and the research targets is an overview of related 
works. A discussion on the proposed H-MSoC architecture 
is followed by a discussion on the proposed design 
methodology, which is followed by evaluation of results 
and analysis. The final three sections are the conclusion, 
the acknowledgement, and the references. 

2. Related Works 

System-on-chip is an IC that contains and integrates 
many electronic components to become a complete system. 
It has to ensure that each component and the whole 
integrated system work properly [2]. The SoC design 
approach uses a platform-based methodology; hence, the 
SoC developer only needs to focus on the creation of 
specific IP block functionality and its embedded program 
[12, 13]. This is the strong point of a platform-based 
methodology. The SoC developer does not bother to 
design all components from scratch. 

There are two categories of SoC design methodology: 
standard SoC and communication-centric SoC [14]. These 
categories are based on the on-chip communications 
scheme. The standard SoC methodology is the common 
way to design a traditional SoC. Meanwhile, a commu-
nications-centric SoC methodology was developed to 
comply with NoC requirements. Since the NoC architec-

 
 

Fig. 1. Standard SoC design methodology [14]. 
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ture is not the basic platform of this research, we can adapt 
the standard SoC to develop the H-MSoC design 
methodology. The standard SoC design methodology is 
shown in Fig. 1. 

In the standard SoC design methodology, specification 
of the SoC comes first. Then, it needs to be integrated into 
the architectural design definition. From this definition, 
three design aspects can be explored: HW unit design, 
communications scheme infrastructure, and SW definition 
and tools development. HW units and the communications 
scheme are integrated into the SoC HW platform. It needs 
to be checked in order to ensure that its functionalities 
comply with the architecture definition. If the SoC HW 
platform is ready, the SW programs and applications can 
be implemented on it. 

3. Proposed H-MSoC System 
Architecture 

The hybrid multi–system-on-chip (H-MSoC) architec-
ture is formed from Phy-SoC and App-SoC architectures, 
which are connected to each other via Ethernet, as 
illustrated in Fig. 2. The focus of Phy-SoC is IP core 
development, SoC HW configuration, and processing 
monitor. Meanwhile, the focus of App-SoC is application 
and the user interface development. Because of its 
separation and localization approach, both homogeneous 
and heterogeneous SoC platforms can be used.  

Actually, the hierarchical designs of those SoCs are the 
same. The differences are in the choice of SoC HW 
architecture, operating system (OS), application program, 
and types of data. By judicious choice and design from 
those aspects, each SoC can be designed optimally and 
efficiently, yet at the same time, can attain high flexibility 
and a broad spectrum of applications. 

For Phy-SoC design, the SoC HW platform should be 
easily configured in the HW design approach. It essentially 

supports a real-time operating system (RTOS) and simple 
programming, because they are sufficient for executing 
and running the instructions in the Phy-SoC. For App-SoC 
design, the SoC HW platform should be easily configured, 
supporting the higher level OS and high-level pro-
gramming, because they are compatible with application 
and UI development. Furthermore, each SoC can be 
reconfigured anytime. Because of the different focus, Phy-
SoC and App-SoC can be designed separately. Each SoC 
is independent. Thus, arguably, the H-MSoC architecture 
offers rapid development time in achieving high-flexibility 
functions. 

4. Design Methodology and Prototyping 

The proposed design methodology’s flowchart can be 
seen in Fig. 3. First, we have to define the H-MSoC 
specifications and architecture, which can then be broken 
down into two major designs: the Phy-SoC and App-SoC 
design methodologies. Since we use the standard SoC 
design method, each SoC will be treated in a similar 
manner. Three parts of the SoC are designed: the HW unit, 
the application SW, and the communications infrastructure. 
Afterwards, if all SoCs are ready, they will be connected to 
each other using the Ethernet protocol. If all tests and 
evaluations show good performance, the H-MSoC 
architecture is proven. 

4.1 Physical-SoC (Phy-SoC) 
For Phy-SoC design, we built an embedded system 

with LEON3-based SoC HW as the reference for the 
architecture platform. The real-time operating system 
(RTOS) eCos is embedded in the Phy-SoC HW. We chose 
the eCos RTOS because it is freely licensed and feasibly 
configured for precise application requirements [15]. In the 
higher layers, simple programs run and compute the data. 

For this Phy-SoC prototype, the Stratix II EP2S180 
DSP development board was used. The focus in the Phy-
SoC is IP core or modular HW development. Thus, in this 
prototype, we have two HW design scenarios. First, we 
added an existing IP core to prove that the SoC can be 
reconfigured with the existing IP cores. Second, we added 
a fully customized IP core to prove that the SoC can be 
reconfigured with new IP cores, even if designed from 
scratch. For the first scenario, a physical WiMAX design 
(PHY_WMX) was added with peripheral support [16]. For 
the second, a custom ROM design (RCH_ROM) was 
created and added into the Phy-SoC. The final LEON3-
based Phy-SoC architecture is illustrated in Fig. 4.  

4.2 Application-SoC (App-SoC) 
For the App-SoC design, we built an embedded system 

with a ZYNQ-7000–based SoC HW as a reference 
architecture platform. The basic HW architecture of the 
ZYNQ-7000–based SoC was adopted from the Boot 
Partition Kit provided by Xillybus [17]. For the operating 
system, we chose Xillinux, which is also from Xillybus. It 

 

Fig. 2. H-MSoC architecture hierarchy. 
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is a Linux-based OS distribution for Zedboard, Zybo, 
Microzed, and SocKit [17]. In the higher layers, we can 
create functional programs or install existing applications 
to run and compute the data. For this App-SoC prototype, 
we used the Zybo development board. The final ZYNQ-
7000–based App-SoC architecture is illustrated in Fig. 5.  

The focus in the App-SoC is application or user 
interface development. Thus, in this prototype, we needed 

to use a high-functionality OS (a Linux distribution) and 
existing programs that run on the OS in order to prove that 
the SoC is capable of supporting a high-level OS and many 
UI-based applications. Hopefully, it can complement the 

 

Fig. 3. H-MSoC design methodology. 

 

Fig. 4. LEON3 based Phy-SoC Architecture 

 
 

Fig. 5. ZYNQ-7000 based App-SoC Architecture. 
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Phy-SoC. Disadvantages of the Phy-SoC can be overcome 
by the advantages of the App-SoC, and vice versa.  

4.3 Design Integration into H-MSoC 
After the Phy-SoC and App-SoC are proven to work 

properly, design integration is the next step. We call this 
integrated design a hybrid multi-SoC. The integration 
infrastructure is established by using the Ethernet protocol, 
which was chosen because of its flexible configuration, 
high speed, and mature concept worldwide. Fig. 6 
illustrates the detailed design integration in the H-MSoC 
architecture prototype, and Fig. 7 is the actual prototype 
snapshot. 

For inter-SoC connection, each SoC uses an ETH PHY. 
In the prototype, we use an SMSC LAN91C111 for the 
LEON3 SoC and a Realtek RTL8211E for the ZYNQ-
7000 SoC. For Phy-SoC, ETH PHY is connected directly 
to a memory controller. Thus, every single piece of data 
transferred or received via Ethernet has to pass through the 
memory controller. Here, we only do socket programming 
to transmit and receive the data. Meanwhile, for App-SoC, 
ETH PHY is connected to multiplexed input/output (MIO), 
which is connected directly to the processing system (PS). 
Specifically, we use MIO16 up to MIO27 to connect 
Ethernet to the PS. Hence, we only need to install OS and 

Ethernet drivers, and thus, the Ethernet is ready to transmit 
and receive data. 

5. Evaluation of Results and Analysis 

5.1 Physical-SoC Evaluation 
For functional evaluation, we created a test program to 

evaluate signaling performance inside the Phy-SoC. We 
mainly evaluated signaling from three aspects: (1) data 
access from the IP core, (2) data transfer over the 
Advanced Microcontroller Bus Architecture (AMBA), the 
Advanced High-performance Bus (AHB) and the Advanced 
Peripheral Bus (APB), and (3) interrupt performance. 
From the evaluation, we have proven that the Phy-SoC 
works successfully. Functional simulation results are 
presented in Fig. 8. We can clearly see that data access is 
done in the IP core. The data can also be delivered via 
AMBA, AHB, and APB in order to evaluate the interface 
performance between the IP cores and buses. 

For communications evaluation, a network ping test 
and data transfer between Phy-SoC and a laptop were 
observed. “Transferred data” is a collection of customized 
data stored in the customized ROM (RCH_ROM). Data 
transfer is done by using User Datagram Protocol (UDP). 

 

Fig. 6. Detailed H-MSoC architecture prototype. 

 

 
 

Fig. 7. Actual H-MSoC prototype. 
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UDP was chosen because of its simple mechanism, which 
is suitable for simple data transfer evaluation. Test results 
show that the communications module in the Phy-SoC 
works properly, which means the Phy-SoC can 
communicate and transfer data with outside systems. Thus, 
the Phy-SoC is ready to be integrated into the H-MSoC. 
The network ping test and received data in the laptop are 
shown in Figs. 9 and 10, respectively. 

5.2 Application-SoC Evaluation 
For App-SoC evaluation, network ping and video 

streaming evaluations were conducted. The App-SoC 
responds to the network ping with a response time 

parameter. The results can be seen in Fig. 11. We can see 
that response times on network ping are handled by App-
SoC in 0.3-0.7 ms. Since the App-SoC is supposed to be 
the one receiving data from the Phy-SoC and it is 
insensitive to latency, the performance result is sufficient. 

For video streaming evaluation, we sent a video from 
the laptop to the App-SoC and evaluated its output, both 
sound and display. For a video tester source, we chose the 
MP4 video format with the following specifications: 
322x240 pixels per frame, a frame rate of 25 fps, a data 
rate of 217 kbps, and total bit rate of 313 kbps. As shown 
in Fig. 12, display results for video streaming are good. 
The video is played smoothly, and the audio is clear. This 
evaluation ensures that the App-SoC is working properly 
and can be developed further as an application SW 
development platform. It also means the App-SoC is ready 
to be connected to the Phy-SoC in order to form the H-
MSoC system. 

5.3 H-MSoC Evaluation 
H-MSoC evaluation was conducted by observing data 

transfer activity and communications between Phy-SoC 
and App-SoC. The H-MSoC connection setup is shown in 

 
 

Fig. 8. Functional simulation result. 

 

 

Fig. 9. Network ping result. 

 

 

Fig. 10. Data transfer result. 

 

 

Fig. 11. Network ping response time. 
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Fig. 7. A Stratix II EP2S180 DSP development board 
contains the Phy-SoC design; meanwhile, a Zybo 
development board contains the App-SoC. Evaluation 
results in Fig. 13 show that data transfer is successful. Phy-
SoC and App-SoC are proven to work together properly to 
establish collaborative communications as a single H-
MSoC. This evaluation leads us to two points about the H-
MSoC development approach. First, Phy-SoC and App-
SoC are proven to work together properly and to 
collaborate with each other for internal communications in 
the H-MSoC system. Second, the H-MSoC architecture is 
quickly and easily configured, from both the physical HW 
and application SW development perspectives. 

 

6. Conclusion 

In this paper, we propose an alternative SoC 
architecture that can provide a high-flexibility system in a 
short development time. It is called a hybrid multi-SoC (H-
MSoC) architecture approach. The evaluation results have 
proven that the proposed H-MSoC architecture and its 
design methodology can attain the research targets. (1) The 
H-MSoC architecture is easy to configure and capable of 
forming a high-flexibility system; (2) on-chip connections 

are efficient because of SoC separation and localization 
based on its development layer, either physical HW 
development or application SW development; and (3) 
development time is short enough to meet time-to-market 
constraints. 
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