• Title/Summary/Keyword: Hybrid pulse width modulation

Search Result 36, Processing Time 0.024 seconds

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

A New Modified MPPM for High-Speed Wireless Optical Communication Systems

  • Rouissat, Mehdi;Borsali, Riad A.;Chikh-Bled, Mohammad E.
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.188-192
    • /
    • 2013
  • Previous work proposed combining multipulse pulse position modulation (MPPM) with pulse amplitude modulation to form multipulse amplitude and position modulation (MPAPM), which is a hybrid modulation that results in an improvement in bandwidth efficiency but a degradation in power efficiency. In this paper, to achieve greater power efficiency and a better data rate, we propose multipulse dual amplitude-width modulation, based on MPAPM and pulse width modulation. The proposed scheme shows a remarkable improvement in data rate and a 1.5-dB improvement in power efficiency over MPAPM, while sustaining the bandwidth efficiency. After introducing symbol structure, we present the theoretical expressions of spectral efficiency, the power requirements, and the normalized data rate, as well as the results of comparing the proposed modulation to MPPM and MPAPM.

Reducing Noise Source Harmonics of the Next-Generation High-Speed Railway Inverter System Using Hybrid RPWM Technique (Hybrid RPWM을 적용한 IPMSM 기반 차세대 고속전철 인버터 구동 시스템의 소음원 고조파 저감)

  • Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Sung-Je;Park, Young-Ho;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1061-1068
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system using Hybrid Random Pulse Width Modulation (Hybrid RPWM) is proposed to reduce electromagnetic noise. To verify the validity of study, simulation results of the Next Generation High Speed Railway Inverter system using the proposed method was compared with the system using conventional method. A simulation program is developed using Matlab/Simulink. The results show that the voltage and current harmonics of the Next Generation High Speed Railway Inverter system using Hybrid RPWM significantly decrease and spread into wide band area.

AWM Driving Method with Hybrid Current Control for PM-OLED Panel (수동형 OLED를 위한 복합 전류 제어 기능을 갖는 AWM 구동방식)

  • Kim, Seok-Man;Lee, Je-Hoon;Hur, Yeo-Jin;Kim, Yong-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.116-123
    • /
    • 2007
  • This paper proposed a new amplitude width modulation for OLED data driver IC. The data driver controls brightness of OLED by adjusting amplitude and width of the data drive current pulse. There were two conventional methods; pulse amplitude modulation(PAM) and pulse width modulation(PWM). The PWM method suffered from lower light emitting time efficiency at low luminance signal. The PAM method suffered from large chip area using DACs for each column. The proposed method was aiming at accurately controlling of the current level by MSB data and light emitting efficiency by LSB data to improve the inefficiencies of the PAM and a PWM. The proposed AWM driver circuit implemented using $0.35-{\mu}m$ 3-poly 4-metal CMOS high voltage process. The simulation result shows the improvement in the accuracy of the gray level control even though the driver circuit is smaller than the PAM.

The Operation Characteristic of the LED Taxi Light for Wavelength According to Meteorological Changes for Hybrid System Using a ESS (하이브리드 시스템의 ESS를 이용한 기상변화의 파장별 LED 항공유도등 동작특성)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong- Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 2016
  • In this study, the system was composed of the booster chopper and the power converter, which is a pulse width modulation (PWM) voltage inverter using a hybrid power generation system solar cell energy and wind force, Furthermore, in order to compensate the PWM voltage type inverter was linked with the general commercial power source, and through a normal operation of energy storage system (ESS), the system operated the LED Taxi Light by Wavelength according to Meteorological Changes at the airport in an efficient manner. The performance of the system was compared with the solar cell characteristics specification. In addition, for phase synchronization with the PWM voltage type inverter, the grid voltage was detected so as to operate the grid voltage and inverter output in the same phase and to connect the surplus electric power with the system. Finally, by developing a control circuit at the same time from which an excellent dynamic characteristics can be obtained through applying to the airport runway taxi light, it was concluded that a variety of taxi light can be pursued.

A Hybrid Modulation Strategy with Reduced Switching Losses and Neutral Point Potential Balance for Three-Level NPC Inverter

  • Jiang, Weidong;Gao, Yan;Wang, Jinping;Wang, Lei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.738-750
    • /
    • 2017
  • In this paper, carrier-based pulse width modulation (CBPWM), space vector PWM (SVPWM) and reduced switching losses PWM (RSLPWM) for the three-level neutral point clamped (NPC) inverter are introduced. In the case of the neutral point (NP) potential (NPP) offset, an asymmetric disposition PWM (ASPDPWM) strategy is proposed, which can output PWM sequences correctly and suppress the lower order harmonics of the inverter effectively. An NPP balance strategy based on carrier based PWM (CBPWM) is analyzed. A hybrid modulation strategy combining RSLPWM and the NPP balance based on CBPWM is proposed, and hysteresis control is adopted to switch between the two modulation strategies. An experimental prototype of the three-level NPC inverter is built. The effectiveness of the hybrid modulation is verified with a resistance-inductance load and a permanent magnetic synchronous motor (PMSM) load, respectively. The experimental results show that reduced switching losses and an acceptable NPP can be effectively achieved in the hybrid modulation strategy.

Study on Hybrid PWM Method under Low Switching Frequency

  • Kekang, Wei;Zheng, Trillion Q.;Wang, Ran;Wang, Chenchen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This paper presents a hybrid pulse width modulation (PWM) method under low switching frequency conditions based on space vector PWM (SVPWM) and selective harmonic eliminated PWM (SHEPWM), which use asynchronous carrier modulation SVPWM at low frequency, and SHEPWM at high frequency, a square wave after rated conditions. A transitive strategy is proposed to realize a smooth transition of individual modes including SVPWM, SHEPWM and square waves. Experimental results confirm this hybrid modulation method and their transition are reasonable and proper.

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.

Torque Ripple Reduction and Switching Loss Reduction Method for Induction Motors by Hybrid PWM (전압변조기법 변경을 이용한 유도전동기의 스위칭 손실 및 토크 리플 저감 방법)

  • Lee, Sung Ho;Kim, Sol Joon;Lee, June-Seok;Lee, Chang-Moo
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.189-190
    • /
    • 2018
  • 본 논문에서는 유도전동기의 토크 리플 및 스위칭 손실 저감을 위해 전압변조기법인 공간벡터변조(Space Vector Pulse Width Modulation, SVPWM) 기법과 불연속전압변조(Discontinuous Pulse Width Modulation, DPWM) 기법을 혼합하여 사용하는 새로운 변조기법을 제안한다. 제안하는 방식은 지령전압이 최대인 부근에서 SVPWM 기법을 사용하며, 나머지 구간에서는 DPWM 기법을 적용한다. 전 구간 단일기법을 적용할 때와 비교하여 제안하는 방식은 토크 리플 및 스위칭 손실을 효율적으로 저감시킬 수 있으며 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

  • Vivek, G.;Biswas, Jayanta;Nair, Meenu D.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1729-1750
    • /
    • 2018
  • Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.